Formula for the asymmetric diffraction peak profiles based on double Soller slit geometry

1998 ◽  
Vol 69 (6) ◽  
pp. 2268-2272 ◽  
Author(s):  
Takashi Ida
Author(s):  
Frastica Deswardani ◽  
Helga Dwi Fahyuan ◽  
Rimawanto Gultom ◽  
Eif Sparzinanda

Telah dilakukan penelitian mengenai pengaruh konsentrasi doping karbon pada lapisan tipis TiO2 yang ditumbuhkan dengan metode spray terhadap struktur kristal dan morfologi TiO2. Hasil karakterisasi SEM menunjukkan bahwa penambahan doping karbon dapat meningkatkan ukuran butir. Lapisan TiO2 doping karbon 8% diperoleh ukuran butir terbesar adalah 1.35 μm, sedangkan ukuran tekecilnya adalah 0.45 μm. Sementara itu, untuk lapisan tipis TiO2 didoping karbon 15% memiliki ukuran butir terbesar yaitu 1.76 μm dan terkecil 0.9 μm. Hasil XRD menunjukkan seluruh puncak difraksi lapisan tipis TiO2 dengan doping karbon 8% dan 15% merupakan TiO2 anatase. Ukuran kristal lapisan TiO2 didoping karbon 8% diperoleh sebesar 638,08 Å dan untuk pendopingan 15% karbon ukuran kristal lapisan tipis TiO2 adalah 638,09 Å, hal ini menunjukkan ukuran kristal kedua sampel tidak mengalami perubahan yang signifikan.   TiO2 thin film with carbon doping has been successfully grown by spray method. The research on the effect of carbon doping on crystal structure and morfology of TiO2 has been prepared by varying carbon concentration (8% and 15% carbon). Analysis of SEM showed that the addition of carbon may increase the grain size. Thin film of TiO2 doped carbon 8% has the largest grain size 1.35 μm, while the smallest grain size is 0.45 μm. Meanwhile, for thin film TiO2 doped carbon 15% has the largest grain size 1.76 μm and smallest 0.9 μm. The XRD results showed the entire diffraction peak of thin film TiO2 doped carbon 8% and 15% were TiO2 anatase. The crystal size of thin film TiO2 doped carbon 8% was obtained at 638.08 Å and for thin film TiO2 doped carbon 15% the crystalline size of TiO2 thin film was 638.09 Å, this shows that the crystal size of both samples did not change significantly.    


2021 ◽  
pp. 2000447
Author(s):  
Devilal Dahal ◽  
Hiroka Warren ◽  
Parthapratim Biswas

1979 ◽  
Vol 23 ◽  
pp. 333-339
Author(s):  
S. K. Gupta ◽  
B. D. Cullity

Since the measurement of residual stress by X-ray diffraction techniques is dependent on the difference in angle of a diffraction peak maximum when the sample is examined consecutively with its surface at two different angles to the diffracting planes, it is important that these diffraction angles be obtained precisely, preferably with an accuracy of ± 0.01 deg. 2θ. Similar accuracy is desired in precise lattice parameter determination. In such measurements, it is imperative that the diffractometer be well-aligned. It is in the context of diffractometer alignment with the aid of a silicon powder standard free of residual stress that the diffraction peak analysis techniques described here have been developed, preparatory to residual stress determinations.


2002 ◽  
Vol 17 (2) ◽  
pp. 104-111 ◽  
Author(s):  
I. C. Dragomir ◽  
T. Ungár

Diffraction peak profiles broaden due to the smallness of crystallites and the presence of lattice defects. Strain broadening of powders of polycrystalline materials is often anisotropic in terms of the hkl indices. This kind of strain anisotropy has been shown to be well interpreted assuming dislocations as one of the major sources of lattice distortions. The knowledge of the dislocation contrast factors are inevitable for this interoperation. In a previous work the theoretical contrast factors were evaluated for cubic crystals for elastic constants in the Zener constant range 0.5≤Az≤8. A large number of ionic crystals and many refractory metals have elastic anisotropy, Az, well below 0.5. In the present work the contrast factors for this lower anisotropy-constant range are investigated. The calculations and the corresponding peak profile analysis are tested on ball milled PbS and Nb and nanocrystalline CeO2.


2012 ◽  
Vol 550-553 ◽  
pp. 103-106
Author(s):  
Ying Liu ◽  
Lu Lin ◽  
Xiao Yu Sui ◽  
Jun Ping Zhuang ◽  
Chun Sheng Pang

The effects of catalyst amount on the yields of levulinic and hydroxymethyl furfural were investigated during conversion of glucose to levulinic acid catalyzed by solid super acid SO42- / TiO2-Al2O3-SnO2. XRD and XPS were used to analyse the characteristics of solid super acid SO42- / TiO2-Al2O3-SnO2 before reaction and after reaction. The results showed that: solid super acid SO42- / TiO2-Al2O3-SnO2exhibited good catalytic activity in the reaction of hydrolysis of glucose to produce levulinic acid. There were three obvious peaks in these XRD spectra. The peaks on 44.6° and 67.1° were the characteristic diffraction peaks of γ-Al2O3. The anatase characteristic diffraction peak was on 37.4°. The catalyst was steady in the process. The binding energy of S 2p was similar to the binding energy of standard S6+ 2p in the S 2p XPS spectrum of solid super acid. O 1s XPS was double-peaked spectrum. The increase of element C was the main reason of inactivation of catalyst.


2006 ◽  
Vol 89 (23) ◽  
pp. 233515
Author(s):  
E. Üstündag ◽  
R. A. Karnesky ◽  
M. R. Daymond ◽  
I. C. Noyan

Sign in / Sign up

Export Citation Format

Share Document