Full-band Monte Carlo model of electron and hole transport in strained Si including inelastic acoustic phonon scattering

1999 ◽  
Vol 74 (15) ◽  
pp. 2185-2187 ◽  
Author(s):  
Björn Fischer ◽  
Karl R. Hofmann
VLSI Design ◽  
1998 ◽  
Vol 8 (1-4) ◽  
pp. 41-45 ◽  
Author(s):  
F. M. Bufler ◽  
P. Graf ◽  
B. Meinerzhagen

Monte Carlo results are presented for the velocity-field characteristics of holes in (i) unstrained Si, (ii) strained Si and (iii) strained SiGe using a full band model as well as an analytic nonparabolic and anisotropic band structure description. The full band Monte Carlo simulations show a strong enhancement of the drift velocity in strained Si up to intermediate fields, but yield the same saturation velocity as in unstrained Si. The drift velocity in strained SiGe is also significantly enhanced for low fields while being substantially reduced in the high-field regime. The results of the analytic band models agree well with the full band results up to medium field strengths and only the saturation velocity is significantly underestimated.


2003 ◽  
Vol 2 (2-4) ◽  
pp. 109-112 ◽  
Author(s):  
Hiroshi Nakatsuji ◽  
Yoshinari Kamakura ◽  
Kenji Taniguchi

1999 ◽  
Vol 4 (S1) ◽  
pp. 781-786
Author(s):  
E. Bellotti ◽  
B. Doshi ◽  
K. F. Brennan ◽  
P. P. Ruden

Ensemble Monte Carlo calculations of electron transport at high applied electric field strengths in bulk, wurtzite phase InN are presented. The calculations are performed using a full band Monte Carlo simulation that includes a pseudopotential band structure, all of the relevant phonon scattering agents, and numerically derived impact ionization transition rates. The full details of the first five conduction bands, which extend in energy to about 8 eV above the conduction band minimum, are included in the simulation. The electron initiated impact ionization coefficients and quantum yield are calculated using the full band Monte Carlo model. Comparison is made to previous calculations for bulk GaN and ZnS. It is found that owing to the narrower band gap in InN, a lower breakdown field exists than in either GaN or ZnS.


1998 ◽  
Vol 537 ◽  
Author(s):  
E. Bellotti ◽  
B. Doshi ◽  
K. F. Brennan ◽  
P. P. Ruden

AbstractEnsemble Monte Carlo calculations of electron transport at high applied electric field strengths in bulk, wurtzite phase InN are presented. The calculations are performed using a full band Monte Carlo simulation that includes a pseudopotential band structure, all of the relevant phonon scattering agents, and numerically derived impact ionization transition rates. The full details of the first five conduction bands, which extend in energy to about 8 eV above the conduction band minimum, are included in the simulation. The electron initiated impact ionization coefficients and quantum yield are calculated using the full band Monte Carlo model. Comparison is made to previous calculations for bulk GaN and ZnS. It is found that owing to the narrower band gap in InN, a lower breakdown field exists than in either GaN or ZnS.


1997 ◽  
Vol 81 (5) ◽  
pp. 2250-2255 ◽  
Author(s):  
S. Jallepalli ◽  
M. Rashed ◽  
W.-K. Shih ◽  
C. M. Maziar ◽  
A. F. Tasch

1999 ◽  
Vol 4 (S1) ◽  
pp. 570-575 ◽  
Author(s):  
J.D. Albrecht ◽  
P.P. Ruden ◽  
E. Bellotti ◽  
K.F. Brennan

Results of Monte Carlo simulations of electron transport for wurtzite phase GaN in crossed, weak electric and magnetic fields are presented. It is found that the Hall factor, rH = μHall/μdrift, decreases monotonically as the temperature increases from 77K to 400K.The low temperature value of the Hall factor increases significantly with increasing doping concentration. The Monte Carlo simulations take into account the electron-lattice interaction through polar optical phonon scattering, deformation potential acoustic phonon scattering (treated as an inelastic process), and piezoelectric acoustic phonon scattering. Impurity scattering due to ionized and neutral donors is also included, with the latter found to be important at low temperature due to the relatively large donor binding energy which implies considerable carrier freeze-out already at liquid nitrogen temperature. The temperature dependences of the electron concentration, drift mobility, and Hall factor are calculated for donor concentrations equal to 5 × 1016 cm−3, 1017 cm−3, and 5 × 1017 cm−3. The Monte Carlo simulations are compared to classical analytical results obtained using the relaxation-time approximation, which is found to be adequate at low temperatures and sufficiently low carrier concentrations so that inelastic scattering effects due to optical phonons and degeneracy effects are negligible. The influence of dislocations on the Hall factor is discussed briefly.


2014 ◽  
Vol 986-987 ◽  
pp. 131-135
Author(s):  
Jian An Wang ◽  
Meng Nan ◽  
Hui Yong Hu ◽  
He Ming Zhang

Nowadays, the strained-Si technology has been used to maintain the momentum of semiconductor scaling due to its enhancement performance result from the higher mobility. In this paper, the influence of ionizing impurity scattering, acoustic phonon scattering and intervalley scattering to strained-Si (101) material is discussed.In addition, a calculation of the electron mobility in Strained-Si (101) material is made using the average momentum relaxation time method described in Ref [1]. The results show that the electron mobility increases gradually for both [001] and [100] orientations while for [010] orientation increases rapidly with the increasing Ge fraction x.[1]


Sign in / Sign up

Export Citation Format

Share Document