Structure and property characterization of low-k dielectric porous thin films determined by x-ray reflectivity and small-angle neutron scattering

2001 ◽  
Author(s):  
Eric K. Lin
2000 ◽  
Vol 612 ◽  
Author(s):  
Eric K. Lin ◽  
Wen-li Wu ◽  
Changming Jin ◽  
Jeffrey T. Wetzel

AbstractHigh-resolution X-ray reflectivity and small angle neutron scattering measurements are used as complementary techniques to characterize the structure and properties of porous thin films for use as low-k interlevel dielectric (ILD) materials. With the addition of elemental composition information, the average pore size, porosity, pore connectivity, matrix density, average film density, film thickness, coefficient of thermal expansion, and moisture uptake of porous thin films are determined. Examples from different classes of materials and two analysis methods for small angle neutron scattering data are presented and discussed.


2001 ◽  
Vol 30 (4) ◽  
pp. 304-308 ◽  
Author(s):  
Barry J. Bauer ◽  
Eric K. Lin ◽  
Hae-Jeong Lee ◽  
Howard Wang ◽  
Wen-Li Wu

2000 ◽  
Vol 612 ◽  
Author(s):  
Wen-li Wu ◽  
Eric K. Lin ◽  
Changming Jin ◽  
Jeffrey T. Wetzel

AbstractA methodology to characterize nanoporous thin films based on a novel combination of high-resolution specular x-ray reflectivity and small-angle neutron scattering has been advanced to accommodate heterogeneities within the material surrounding nanoscale voids. More specifically, the average pore size, pore connectivity, film thickness, wall or matrix density, coefficient of thermal expansion, and moisture uptake of nanoporous thin films with non-homogeneous solid matrices can be measured. The measurements can be performed directly on films up to 1.5 µm thick while supported on silicon substrates. This method has been successfully applied to a wide range of industrially developed materials for use as low-k interlayer dielectrics.


Sign in / Sign up

Export Citation Format

Share Document