Ultrasonic evaluation of the effects of compressive residual stresses on aircraft engine turbine blades subjected to high cycle fatigue

Author(s):  
Don E. Bray
Author(s):  
Douglas J. Hornbach ◽  
Jeremy E. Scheel

Stress corrosion cracking (SCC) and corrosion fatigue (CF) of 12% Cr stainless steel components can lead to reduced availability of steam turbines (ST). Significant operation and maintenance (O&M) costs are required to protect against CF and SCC in both aging and new higher efficiency ST systems. Shot peening has been used to reduce the overall operating tensile stresses, however corrosion pits, foreign object damage (FOD), and erosion can penetrate below the relatively shallow residual compression providing initiation sites for SCC and CF. A means of reliably introducing a deep layer of compressive residual stresses in critical ST components will greatly reduce O&M costs by improving CF life, increasing damage tolerance, reducing SCC susceptibility, and extending the service life of components. Low plasticity burnishing (LPB) is an advanced surface enhancement process providing a means of introducing compressive residual stresses into metallic components for enhanced fatigue, damage tolerance, and SCC performance. LPB processing can be applied as a repair process during scheduled overhauls or on new production components. High cycle fatigue tests were conducted on Type 410 stainless steel, a common alloy used in critical ST components, to compare the corrosion fatigue benefits of LPB to shot peening. Samples were tested in an active corrosion medium of 3.5% NaCl solution. Mechanical or accelerated corrosion damage was placed in test samples to simulate foreign object damage, pitting damage and water droplet erosion prior to testing. High cycle fatigue and residual stress results are shown. Compression from LPB was much deeper than the damage providing a nominal 100X improvement in fatigue life compared to the shallow compression from SP. Life extension from LPB offers significant O&M cost savings, improved reliability, and reduced outages for ST power generators.


2005 ◽  
Vol 490-491 ◽  
pp. 184-189 ◽  
Author(s):  
Farid Belahcene ◽  
Xiaolai Zhou ◽  
Jian Lu

Shot peening is an effective method of improving fatigue performance of machine parts in the industry by producing a thin surface layer of compressive residual stresses that prevents crack initiation and retards crack growth during service. Nondestructive evaluation of the prevailing compressive residual stresses in the shallow subsurface layer is realized by the critically refracted longitudinal (Lcr) waves. This paper presents experimental data obtained on SMAT (surface mechanical attrition treatment) steel alloy S355 sample. Comparative travel-time shows that there are statistically significant differences in treated and untreated specimen. With knowledge of the acoustoelastic constants which are obtained by a test calibration, the experimental data indicates that compressive residual stresses are distributed near subsurface (hundreds of micron). These stress results show that the Lcr technique is efficient for evaluation of residual stresses after the surface treatment.


Author(s):  
Yaozhi Lu ◽  
Fanzhou Zhao ◽  
Loic Salles ◽  
Mehdi Vahdati

The current development of wind turbines is moving toward larger and more flexible units, which can make them prone to fatigue damage induced by aeroelastic vibrations. The estimation of the total life of the composite components in a wind turbine requires the knowledge of both low and high cycle fatigue (LCF and HCF) data. The first aim of this study is to produce a validated numerical model, which can be used for aeroelastic analysis of wind turbines and is capable of estimating the LCF and HCF loads on the blade. The second aim of this work is to use the validated numerical model to assess the effects of extreme environmental conditions (such as high wind speeds) and rotor over-speed on low and high cycle fatigue. Numerical modelling of this project is carried out using the Computational Fluid Dynamics (CFD) & aeroelasticity code AU3D, which is written at Imperial College and developed over many years with the support from Rolls-Royce. This code has been validated extensively for unsteady aerodynamic and aeroelastic analysis of high-speed flows in gas turbines, yet, has not been used for low-speed flows around wind turbine blades. Therefore, in the first place the capability of this code for predicting steady and unsteady flows over wind turbines is studied. The test case used for this purpose is the Phase VI wind turbine from the National Renewable Energy Laboratory (NREL), which has extensive steady, unsteady and mechanical measured data. From the aerodynamic viewpoint of this study, AU3D results correlated well with the measured data for both steady and unsteady flow variables, which indicated that the code is capable of calculating the correct flow at low speeds for wind turbines. The aeroelastic results showed that increase in crosswind and shaft speed would result in an increase of unsteady loading on the blade which could decrease the lifespan of a wind turbine due to HCF. Shaft overspeed leads to significant increase in steady loading which affects the LCF behaviour. Moreover, the introduction of crosswind could result in significant dynamic vibration due to forced response at resonance.


Author(s):  
Senthil Kumar Kandhaswamy Srinivasan ◽  
Nazar Periarowthar

Squeeze film dampers have traditionally been used in aircraft engine to overcome stability and vibration problems that are not adequately handled with conventional style bearings. One of the key design features in a squeeze film damper [1] configuration is the introduction of flexibility in the bearing support. The simplest means to provide the support flexibility in the squeeze film damper is through the use of squirrel cage [2]. This paper deals with structural design analysis of cylindrical squirrel cage of an aircraft engine. Design of the squirrel cage needs a balance between stiffness and strength requirements. To meet the strength, stiffness and fatigue life requirements, squirrel cage web dimensions and fillet radius are modified. The various configurations of the squirrel cage have been evaluated to arrive at the optimum design. Stress analysis of the bearing has been carried out for axial, radial unbalance loads. Stress distribution in the web region has been studied in detail. High cycle fatigue life margins are estimated using Goodman diagram. The squirrel cage web dimensions and fillet radius are modified to improve HCF life requirements. The operating stresses in the squirrel cage are reduced while meeting the stiffness and HCF life requirements of the component.


2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Maziar Toursangsaraki ◽  
Huamiao Wang ◽  
Yongxiang Hu ◽  
Dhandapanik Karthik

Abstract This study aims to model the effects of multiple laser peening (LP) on the mechanical properties of AA2024-T351 by including the material microstructure and residual stresses using the crystal plasticity finite element method (CPFEM). In this approach, the LP-induced compressive residual stress distribution is modeled through the insertion of the Eigenstrains as a function of depth, which is calibrated by the X-ray measured residual stresses. The simulated enhancement in the tensile properties after LP, caused by the formation of a near-surface work-hardened layer, fits the experimentally obtained tensile curves. The model calculated fatigue indicator parameters (FIPs) under the following cyclic loading application show a decrease in the near-surface driving forces for the crystal slip deformation after the insertion of the Eigenstrains. This leads to a higher high cycle fatigue (HCF) resistance and the possible transformation of sensitive locations for fatigue failure further to the depth after LP. Experimental observations on the enhancement in the HCF life, along with the relocation of fatigue crack nucleation sites further to the depth, reveal the improvement in the HCF properties due to the LP process and validate the numerical approach.


Author(s):  
Calogero Avola ◽  
Alberto Racca ◽  
Angelo Montanino ◽  
Carnell E. Williams ◽  
Alfonso Renella ◽  
...  

Abstract Maximization of the turbocharger efficiency is fundamental to the reduction of the internal combustion engine back-pressure. Specifically, in turbochargers with a variable geometry turbine (VGT), energy losses can be induced by the aerodynamic profile of both the nozzle vanes and the turbine blades. Although appropriate considerations on material limits and structural performance of the turbine wheel are monitored in the design and aero-mechanical optimization phases, in these stages, fatigue phenomena might be ignored. Fatigue occurrence in VGT wheels can be categorized into low and high cycle behaviors. The former would be induced by the change in turbine rotational speed in time, while the latter would be caused by the interaction between the aerodynamic excitation and blades resonating modes. In this paper, an optimized turbine stage, including unique nozzle vanes design and turbine blades profile, has been assessed for high cycle fatigue (HCF) behavior. To estimate the robustness of the turbine wheel under several powertrain operations, a procedure to evaluate HCF behavior has been developed. Specifically, the HCF procedure tries to identify the possible resonances between the turbine blades frequency of vibrations and the excitation order induced by the number of variable vanes. Moreover, the method evaluates the turbine design robustness by checking the stress levels in the component against the limits imposed by the Goodman law of the material selected for the turbine wheel. In conclusion, both the VGT design and the HCF approach are experimentally assessed.


Author(s):  
C. H. Richter ◽  
U. Krupp ◽  
M. Zeißig ◽  
G. Telljohann

Slender turbine blades are susceptible to excitation. Resulting vibrations stress the blade's fixture to the rotor or stator. In this paper, high cycle fatigue at the edge of contact (EOC) between blade and rotor/stator of such fixtures is investigated both experimentally and numerically. Plasticity in the contact zone and its effects on, e.g., contact tractions, fatigue determinative quantities, and fatigue itself are shown to be of considerable relevance. The accuracy of the finite element analysis (FEA) is demonstrated by comparing the predicted utilizations and slip region widths with data gained from tests. For the evaluation of EOC fatigue, tests on simple notched specimens provide the limit data. Predictions on the utilization are made for the EOC of a dovetail setup. Tests with this setup provide the experimental fatigue limit to be compared to. The comparisons carried out show a good agreement between the experimental results and the plasticity-based calculations of the demonstrated approach.


Sign in / Sign up

Export Citation Format

Share Document