Hydrogen Storage in Nanostructured Carbon Materials at Room Temperature

Author(s):  
Xiaohong Chen
2016 ◽  
Vol 5 (5) ◽  
Author(s):  
Tuan Anh Cao ◽  
Truc Quynh Ngan Luong ◽  
Tran Cao Dao

AbstractCarbide-derived carbons (CDCs) are a growing class of nanostructured carbon materials with properties that are desirable for many applications, ranging from electrical energy to gas storage. However, the synthesis of CDCs often requires high temperatures and/or pressures, as well as toxic chemicals. In this report, we demonstrate environmentally friendly synthesis of a carbon-rich layer on the surface of SiC by anodic etching at room temperature in a highly diluted solution of hydrofluoric acid in ethylene glycol. In our opinion, the carbon-rich layer was formed thanks to the fact that we have used the etching conditions in which the rate of removal of carbon from SiC has become significantly lower compared with the silicon removal rate. More specifically, we have created an environment for SiC anodic etching where there is little water. In such conditions, silicon is still being removed from SiC, thanks to the direct dissolution, whereas the carbon removal rate is significantly reduced, due to the fact that carbon can be lost only by oxidation, but there is not enough water to oxidize carbon as in solutions with plenty of water. Thus, a carbon-rich layer is created on the etched SiC surface.


2003 ◽  
Vol 82 (7) ◽  
pp. 1105-1107 ◽  
Author(s):  
H. Kajiura ◽  
S. Tsutsui ◽  
K. Kadono ◽  
M. Kakuta ◽  
M. Ata ◽  
...  

2015 ◽  
Vol 1117 ◽  
pp. 52-55
Author(s):  
Artis Linarts ◽  
Maris Knite

Polymer conductive filler composites are believed to be promising materials for flexible force sensor manufacture. Polyisoprene various carbon allotrope hybrid composites were made and their piezoresistive properties depending on the two type’s filler concentration and their ratio have been determined. Electrical resistance relaxations of hybrid composites at constant pressure in room temperature were determined as well. Experimental data of resistance relaxation was analyzed and fitted similarly to stress relaxation of polymers at constant pressure.


2003 ◽  
Vol 02 (04n05) ◽  
pp. 307-317
Author(s):  
M. S. YU ◽  
S. Y. CHENG ◽  
Y. C. LIN ◽  
W. C. HO

We have synthesized a set of nanostructured carbon samples including a variety of carbon nanotubes and carbonaceous particles, by catalytic thermal decomposition of CH4 on catalyst LaNi 5 powder with different reaction temperatures. Products obtained at reaction temperatures 550~900°C were characterized by means of HR-TEM, SEM and Raman Scattering. In addition, electrochemical charge–discharge cycling method was carried out at room temperature to measure the reversible hydrogen capacity in pressed electrodes containing mixture of catalyst, nanostructured carbon samples and carbonaceous particles. Results showed that the abundance ratio of well-crystallized graphite to amorphous carbon in each product increases with increasing reaction temperatures. This preliminary study showed also that the hydrogen storage capacity of synthesis products measured in an electrochemical half-cell at room temperature correlates with the nanostructure and morphology of the variety of nanostructured carbon samples. Additionally, the hydrogen adsorption capacity against specific surface area (BET) for synthesis products produced at temperatures higher than 670°C is ranging from 14 to 25 wt.%/(1000 m2/g).


2007 ◽  
Vol 16 (8) ◽  
pp. 1517-1523 ◽  
Author(s):  
Nor Hasridah Abu Hassan ◽  
Abdul Rahman Mohamed ◽  
Sharif Hussein Sharif Zein

2014 ◽  
Vol 58 (27) ◽  
pp. 13-19 ◽  
Author(s):  
B. Fang ◽  
A. Bonakdarpour ◽  
Y. Xing ◽  
J.-S. Yu ◽  
D. P. Wilkinson

2001 ◽  
Vol 706 ◽  
Author(s):  
Xiaohong Chen ◽  
Urszula Dettlaff-Weglikowska ◽  
Miroslav Haluska ◽  
Martin Hulman ◽  
Siegmar Roth ◽  
...  

AbstractThe hydrogen adsorption capacity of various carbon nanostructures including single-wall carbon nanotubes, graphitic nanofibers, activated carbon, and graphite has been measured as a function of pressure and temperature. Our results show that at room temperature and a pressure of 80 bar the hydrogen storage capacity is less than 1 wt.% for all samples. Upon cooling, the capacity of hydrogen adsorption increases with decreasing temperature and the highest value was observed to be 2.9 wt. % at 50 bar and 77 K. The correlation between hydrogen storage capacity and specific surface area is discussed.


Sign in / Sign up

Export Citation Format

Share Document