available carbon
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 30)

H-INDEX

31
(FIVE YEARS 2)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 584
Author(s):  
Agnieszka Brochocka ◽  
Aleksandra Nowak ◽  
Paweł Kozikowski

In this article, we present polymer non-woven fabrics with the addition of carbon sorbents being tested to estimate the breakthrough time and efficient protection against vapors present in smog. For this purpose, three substances were selected, which constitute an inhalation hazard and are smog components: cyclohexane, toluene, and sulfur dioxide. It was demonstrated that an increased quantity of carbon sorbent in polymeric filters significantly prolongs the breakthrough time. However, high sorbent quantities may increase the filter surface mass and air flow resistance. To optimize the protective parameters with functionality, a compromise between the two has to be found. By comparing the breakthrough times for different carbon sorbent quantities, the optimal filter composition was elaborated. The analyzed non-woven fabrics were manufactured by the melt-blown process and filled with ball-milled carbon sorbents supplied directly into the fabric blowing nozzle. Both protective performance and textural properties were analyzed for two commercially available carbon sorbents. Furthermore, it was proven that high values of sorbent-specific surface area translates directly into greater filter performance.


2021 ◽  
Vol 61 (5) ◽  
pp. 93-120

The objective of the research is to analyze the present framework of available carbon taxes worldwide as one of the contemporary methods for cost engineering of carbon dioxide emission. For the achievement of this objective two basic research tasks have been fulfilled: 1) the essence and framework of and the effects stemming from the application of the basic carbon dioxide pricing approaches (the Emissions Trading Systems, Carbon Taxes, Offset Mechanisms, Results Based Climate Finance and Internal Pricing of the carbon emissions) have been presented; and 2) the European Union dimension of the application of a new carbon tax has been discussed within the context of the Carbon border adjustment mechanism (the carbon border tax) of the European union. The research methods that have been used are comparative analysis, content analysis, elements of the retrospective analysis and generalizations of the ideas of main analytical documents in this field. The results of the research are generalizations and analyses providing solid ground for taking evidence-based decisions regarding future carbon taxes introduction at national and EU level as well as for addressing motivated recommendations towards the application of this type of taxes.


2021 ◽  
Author(s):  
Steven Glynn McBride ◽  
Ernest D Osburn ◽  
Jane L Lucas ◽  
Julia S Simpson ◽  
Taylor Brown ◽  
...  

Abstract Variation in microbial use of soil carbon compounds is a major driver of biogeochemical processes and microbial community composition. Available carbon substrates in soil include both low molecular weight dissolved organic carbon (LMW-DOC), and volatile organic compounds (VOCs). To compare the effects of LMW-DOC and VOCs on soil chemistry and microbial communities under different moisture regimes, we performed a microcosm experiment with five levels of soil water content (ranging from 25-70% water-holding capacity) and five levels of carbon amendment: a no carbon control, two dissolved compounds (glucose and oxalate), and two volatile compounds (methanol and α-pinene). Microbial activity was measured throughout as soil respiration; at the end of the experiment, we measured extractable soil organic carbon and total extractable nitrogen and characterized prokaryotic communities using amplicon sequencing. All C amendments increased microbial activity, and all except oxalate decreased total extractable nitrogen. Likewise, individual phyla responded to specific C amendments – e.g., Proteobacteria increased under addition of glucose, and both VOCs. Further, we observed an interaction between moisture and C amendment, where both VOC treatments had higher microbial activity than LMW-DOC treatments and controls at low moisture. Across moisture and C treatments, we identified that Chloroflexi, Nitrospirae, Proteobacteria, and Verrucomicrobia were strong predictors of microbial activity, while Actinobacteria, Bacteroidetes, and Thaumarcheota strongly predicted soil extractable nitrogen. These results indicate that the type of labile C source available to soil prokaryotes can influence both microbial diversity and ecosystem function and that VOCs may drive microbial functions and composition under low moisture conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Santosh Pandit ◽  
Oliver Konzock ◽  
Kirsten Leistner ◽  
VRSS Mokkapati ◽  
Alessandra Merlo ◽  
...  

AbstractEngineering of microbial cells to produce high value chemicals is rapidly advancing. Yeast, bacteria and microalgae are being used to produce high value chemicals by utilizing widely available carbon sources. However, current extraction processes of many high value products from these cells are time- and labor-consuming and require toxic chemicals. This makes the extraction processes detrimental to the environment and not economically feasible. Hence, there is a demand for the development of simple, effective, and environmentally friendly method for the extraction of high value chemicals from these cell factories. Herein, we hypothesized that atomically thin edges of graphene having ability to interact with hydrophobic materials, could be used to extract high value lipids from cell factories. To achieve this, array of axially oriented graphene was deposited on iron nanoparticles. These coated nanoparticles were used to facilitate the release of intracellular lipids from Yarrowia lipolytica cells. Our treatment process can be integrated with the growth procedure and achieved the release of 50% of total cellular lipids from Y. lipolytica cells. Based on this result, we propose that nanoparticles coated with axially oriented graphene could pave efficient, environmentally friendly, and cost-effective way to release intracellular lipids from yeast cell factories.


2021 ◽  
Vol 18 (04) ◽  
Author(s):  
Ryan Chaban ◽  
Daniel Dudt ◽  
Bethany Gordon ◽  
Evan Ostrowski

Air pollutants are known to cause serious health impacts, and historically marginalized groups are disproportionately exposed to these risks. Other hazardous pollutants often accompany carbon dioxide emissions during fossil fuel combustion, and therefore reductions in greenhouse gas emissions from climate policy can also improve air quality. However, although these policies may reduce pollution overall, existing programs have often increased local emissions levels – particularly in the most overburdened neighborhoods. The adverse health effects caused by a redistribution of emissions must be considered as Pennsylvania plans to join the Regional Greenhouse Gas Initiative. We recommend the Department of Environmental Protection include an annual impact assessment of their cap-and-trade program on vulnerable communities using both the available carbon dioxide emissions data and additional local air quality measurements.


Author(s):  
Keisuke Ohashi ◽  
Shogo Hataya ◽  
Akane Nakata ◽  
Kazuki Matsumoto ◽  
Natsumi Kato ◽  
...  

The cellulolytic insect symbiont bacterium, Streptomyces sp. SirexAA-E (SirexAA-E) secretes a suite of Carbohydrate Active enZymes (CAZymes), which are involved in the degradation of various polysaccharides in the plant cell wall, in response to the available carbon sources. Here, we examined a poorly understood response of this bacterium to mannan, one of the major plant cell wall components. SirexAA-E grew well on mannose, carboxymethyl cellulose (CMC), and locust bean gum (LBG) as sole carbon sources in the culture medium. The secreted proteins from each culture supernatant were tested for their polysaccharide-degrading ability, and the composition of secreted CAZymes in each sample was determined by LC-MS/MS. The results indicated that mannose, LBG, and CMC induced the secretion of mannan and cellulose-degrading enzymes. Interestingly, two α-1,2-mannosidases were abundantly secreted during growth on mannose and LBG. By genomic analysis, we found a unique 12 bp palindromic sequence motif at 4 locations in the SirexAA-E genome, two of which were found upstream of the above-mentioned α-1,2-mannosidase genes, along with a newly identified mannose and mannobiose-responsive transcriptional regulator, SsManR. Furthermore, the previously reported cellobiose-responsive repressor, SsCebR, was determined to also use mannobiose as an effector ligand. To test whether mannobiose induces the sets of genes under the control of the two regulators, SirexAA-E was grown on mannobiose, and the secretome composition was analyzed. As hypothesized, the composition of the mannobiose secretome combined sets of CAZymes found in both LBG and CMC secretomes, and so are likely under the regulation of both SsManR and SsCebR. Importance Streptomyces sp. SirexAA-E, a microbial symbiont of biomass harvesting insects, secretes a suite of polysaccharide-degrading enzymes dependent on the available carbon sources. However, the response of this bacterium to mannan has not been documented. In this study, we investigated the response of this bacterium to mannose, mannobiose, and galactomannan (LBG). By combining biochemical, proteomic, and genomic approaches, we discovered a novel mannose and mannobiose responsive transcriptional regulator, SsManR, which selectively regulates three α-1,2-mannosidase-coding genes. We also demonstrated that the previously described cellobiose responsive regulator, SsCebR, could use mannobiose as an effector ligand. Overall, our findings suggest that the Streptomyces sp. SirexAA-E responds to mannose and mannooligosaccharides through two different transcriptional repressors that regulate the secretion of the plant cell wall-degrading enzymes to extract carbon sources in the host environment.


2021 ◽  
Vol 203 (10) ◽  
Author(s):  
Christina Beck ◽  
Sayde Perry ◽  
Daniel M. Stoebel ◽  
Jane M. Liu

ABSTRACT The Gram-negative bacterium Vibrio cholerae adapts to changes in the environment by selectively producing the necessary machinery to take up and metabolize available carbohydrates. The import of fructose by the fructose-specific phosphoenolpyruvate (PEP) phosphotransferase system (PTS) is of particular interest because of its putative connection to cholera pathogenesis and persistence. Here, we describe the expression and regulation of fruB, which encodes an EIIA-FPr fusion protein as part of the fructose-specific PTS in V. cholerae. Using a series of transcriptional reporter fusions and additional biochemical and genetic assays, we identified Cra (catabolite repressor/activator) and cAMP receptor protein (CRP) as regulators of fruB expression and determined that this regulation is dependent upon the presence or absence of PTS sugars. Cra functions as a repressor, downregulating fruB expression in the absence of fructose when components of PTSFru are not needed. CRP functions as an activator of fruB expression. We also report that Cra and CRP can affect fruB expression independently; however, CRP can modulate cra expression in the presence of fructose and glucose. Evidence from this work provides the foundation for continued investigations into PTSFru and its relationship to the V. cholerae life cycle. IMPORTANCE Vibrio cholerae is the causative agent of cholera disease. While current treatments of care are accessible, we still lack an understanding of the molecular mechanisms that allow V. cholerae to survive in both aquatic reservoirs and the human small intestine, where pathogenesis occurs. Central to V. cholerae’s survival is its ability to use available carbon sources. Here, we investigate the regulation of fruB, which encodes a protein central to the import and metabolism of fructose. We show that fruB expression is controlled by the transcriptional regulators Cra and CRP. This work contributes toward a clearer understanding of how carbon source availability impacts the physiology and, potentially, the persistence of the pathogen.


2021 ◽  
Author(s):  
Xu Zhao ◽  
Sarah E Cleary ◽  
Ceren Zor ◽  
Nicole Grobert ◽  
Holly A Reeve ◽  
...  

Heterogeneous biocatalytic hydrogenation is an attractive strategy for clean, enantioselective C=X reduction. This approach relies on enzymes powered by H2-driven NADH recycling. Commercially available carbon-supported metal (metal/C) catalysts are investigated...


2021 ◽  
Author(s):  
Yves CANAC ◽  
Dmitry A. Valyaev

Among a plethora of σ-donor ligands available, carbon-centered ones have become essential, in particular with the emergence of N-heterocyclic carbenes (NHCs), positioning themselves as credible alternatives to traditional nitrogen- and...


Sign in / Sign up

Export Citation Format

Share Document