High‐sensitivity thin‐film strain sensor

1973 ◽  
Vol 23 (11) ◽  
pp. 596-597 ◽  
Author(s):  
Frederick J. Jeffers
2015 ◽  
Vol 135 (6) ◽  
pp. 192-198 ◽  
Author(s):  
Shinnosuke Iwamatsu ◽  
Yutaka Abe ◽  
Toru Yahagi ◽  
Seiya Kobayashi ◽  
Kazushige Takechi ◽  
...  

Micromachines ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 372 ◽  
Author(s):  
Jinjin Luan ◽  
Qing Wang ◽  
Xu Zheng ◽  
Yao Li ◽  
Ning Wang

To avoid conductive failure due to the cracks of the metal thin film under external loads for the wearable strain sensor, a stretchable metal/polymer composite film embedded with silver nanowires (AgNWs) was examined as a potential candidate. The combination of Ag film and AgNWs enabled the fabrication of a conductive film that was applied as a high sensitivity strain sensor, with gauge factors of 7.1 under the applied strain of 0–10% and 21.1 under the applied strain of 10–30%. Furthermore, the strain sensor was demonstrated to be highly reversible and remained stable after 1000 bending cycles. These results indicated that the AgNWs could act as elastic conductive bridges across cracks in the metal film to maintain high conductivity under tensile and bending loads. As such, the strain sensor engineered herein was successfully applied in the real-time detection and monitoring of large motions of joints and subtle motions of the mouth.


2021 ◽  
Vol 9 (15) ◽  
pp. 9634-9643
Author(s):  
Zhenming Chu ◽  
Weicheng Jiao ◽  
Yifan Huang ◽  
Yongting Zheng ◽  
Rongguo Wang ◽  
...  

A graphene-based gradient wrinkle strain sensor with a broad range and ultra-high sensitivity was fabricated by a simple pre-stretching method. It can be applied to the detection of full-range human body motions.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2163
Author(s):  
Dongjin Kim ◽  
Seungyong Han ◽  
Taewi Kim ◽  
Changhwan Kim ◽  
Doohoe Lee ◽  
...  

As the safety of a human body is the main priority while interacting with robots, the field of tactile sensors has expanded for acquiring tactile information and ensuring safe human–robot interaction (HRI). Existing lightweight and thin tactile sensors exhibit high performance in detecting their surroundings. However, unexpected collisions caused by malfunctions or sudden external collisions can still cause injuries to rigid robots with thin tactile sensors. In this study, we present a sensitive balloon sensor for contact sensing and alleviating physical collisions over a large area of rigid robots. The balloon sensor is a pressure sensor composed of an inflatable body of low-density polyethylene (LDPE), and a highly sensitive and flexible strain sensor laminated onto it. The mechanical crack-based strain sensor with high sensitivity enables the detection of extremely small changes in the strain of the balloon. Adjusting the geometric parameters of the balloon allows for a large and easily customizable sensing area. The weight of the balloon sensor was approximately 2 g. The sensor is employed with a servo motor and detects a finger or a sheet of rolled paper gently touching it, without being damaged.


1968 ◽  
Author(s):  
R.M. Moore ◽  
C.J. Busanovich
Keyword(s):  

1969 ◽  
Vol 16 (2) ◽  
pp. 253-253
Author(s):  
R.M. Moore ◽  
C.J. Busanovich
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document