Equations of Motion of a Current-Carrying Plasma Filament

1963 ◽  
Vol 6 (9) ◽  
pp. 1313 ◽  
Author(s):  
T. S. Lundgren
1964 ◽  
Vol 60 (2) ◽  
pp. 325-339
Author(s):  
A. M. J. Davis

1. Introduction. The problem considered here derives its motivation from a paper by Friedlander (8) on the propagation of small disturbances in a compressible, conducting fluid in the presence of a uniform magnetic field (see also Courant and Hilbert (3), VI, §3a). In this the displacement current and energy dissipation by viscosity, heat conduction and Joule heat are neglected and a system of linear partial differential equations is obtained, which generalizes the equations of motion of the theory of sound. Their solution is in general the superposition of an arbitrary incompressible Alfven wave and a magneto-acoustic disturbance. This latter was considered by constructing a Green's function by means of suitable combinations of plane wave solutions and it was found that there are fast and slow wave fronts diverging from a point disturbance. The latter are conoidal in shape and have a singularity at their vertices which propagate along the field line in either direction from the source.


1962 ◽  
Vol 12 (1) ◽  
pp. 81-87 ◽  
Author(s):  
P. G. Saffman

A one-dimensional steady solution of the equations of motion of a cold plasma in a magnetic field is obtained. The plasma is of semi-infinite extent, bounded by a plane interface which separates it from a vacuum or medium at rest. The particles approach from infinity, are reflected at the front, and return to infinity in the opposite direction. At infinity, the magnetic field is parallel and anti-parallel to the plasma streams, and is inclined at an angle to the normal to the interface. The front is a current sheet across which the lines of force are bent, with the component of the magnetic field in the plane of the front changing direction. The inertia of the electrons is neglected, and the characteristic frequency associated with the front is the ion gyro-frequency.


Physics ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 427-448
Author(s):  
Malik Almatwi

In this paper, a current that is called spin current and corresponds to the variation of the matter action in BF theory with respect to the spin connection A which takes values in Lie algebra so(3,C), in self-dual formalism is introduced. For keeping the 2-form Bi constraint (covariant derivation) DBi=0 satisfied, it is suggested adding a new term to the BF Lagrangian using a new field ψi, which can be used for calculating the spin current. The equations of motion are derived and the solutions are dicussed. It is shown that the solutions of the equations do not require a specific metric on the 4-manifold M, and one just needs to know the symmetry of the system and the information about the spin current. Finally, the solutions for spherically and cylindrically symmetric systems are found.


1966 ◽  
Vol 25 ◽  
pp. 373
Author(s):  
Y. Kozai

The motion of an artificial satellite around the Moon is much more complicated than that around the Earth, since the shape of the Moon is a triaxial ellipsoid and the effect of the Earth on the motion is very important even for a very close satellite.The differential equations of motion of the satellite are written in canonical form of three degrees of freedom with time depending Hamiltonian. By eliminating short-periodic terms depending on the mean longitude of the satellite and by assuming that the Earth is moving on the lunar equator, however, the equations are reduced to those of two degrees of freedom with an energy integral.Since the mean motion of the Earth around the Moon is more rapid than the secular motion of the argument of pericentre of the satellite by a factor of one order, the terms depending on the longitude of the Earth can be eliminated, and the degree of freedom is reduced to one.Then the motion can be discussed by drawing equi-energy curves in two-dimensional space. According to these figures satellites with high inclination have large possibilities of falling down to the lunar surface even if the initial eccentricities are very small.The principal properties of the motion are not changed even if plausible values ofJ3andJ4of the Moon are included.This paper has been published in Publ. astr. Soc.Japan15, 301, 1963.


1974 ◽  
Vol 22 ◽  
pp. 145-148
Author(s):  
W. J. Klepczynski

AbstractThe differences between numerically approximated partial derivatives and partial derivatives obtained by integrating the variational equations are computed for Comet P/d’Arrest. The effect of errors in the IAU adopted system of masses, normally used in the integration of the equations of motion of comets of this type, is investigated. It is concluded that the resulting effects are negligible when compared with the observed discrepancies in the motion of this comet.


Author(s):  
R.A. Ploc

The optic axis of an electron microscope objective lens is usually assumed to be straight and co-linear with the mechanical center. No reason exists to assume such perfection and, indeed, simple reasoning suggests that it is a complicated curve. A current centered objective lens with a non-linear optic axis when used in conjunction with other lenses, leads to serious image errors if the nature of the specimen is such as to produce intense inelastic scattering.


Author(s):  
L. E. Murr ◽  
G. Wong

Palladium single-crystal films have been prepared by Matthews in ultra-high vacuum by evaporation onto (001) NaCl substrates cleaved in-situ, and maintained at ∼ 350° C. Murr has also produced large-grained and single-crystal Pd films by high-rate evaporation onto (001) NaCl air-cleaved substrates at 350°C. In the present work, very large (∼ 3cm2), continuous single-crystal films of Pd have been prepared by flash evaporation onto air-cleaved (001) NaCl substrates at temperatures at or below 250°C. Evaporation rates estimated to be ≧ 2000 Å/sec, were obtained by effectively short-circuiting 1 mil tungsten evaporation boats in a self-regulating system which maintained an optimum load current of approximately 90 amperes; corresponding to a current density through the boat of ∼ 4 × 104 amperes/cm2.


Author(s):  
Takao Suzuki ◽  
Hossein Nuri

For future high density magneto-optical recording materials, a Bi-substituted garnet film ((BiDy)3(FeGa)5O12) is an attractive candidate since it has strong magneto-optic effect at short wavelengths less than 600 nm. The signal in read back performance at 500 nm using a garnet film can be an order of magnitude higher than a current rare earth-transition metal amorphous film. However, the granularity and surface roughness of such crystalline garnet films are the key to control for minimizing media noise.We have demonstrated a new technique to fabricate a garnet film which has much smaller grain size and smoother surfaces than those annealed in a conventional oven. This method employs a high ramp-up rate annealing (Γ = 50 ~ 100 C/s) in nitrogen atmosphere. Fig.1 shows a typical microstruture of a Bi-susbtituted garnet film deposited by r.f. sputtering and then subsequently crystallized by a rapid thermal annealing technique at Γ = 50 C/s at 650 °C for 2 min. The structure is a single phase of garnet, and a grain size is about 300A.


Author(s):  
I-Fei Tsu ◽  
D.L. Kaiser ◽  
S.E. Babcock

A current theme in the study of the critical current density behavior of YBa2Cu3O7-δ (YBCO) grain boundaries is that their electromagnetic properties are heterogeneous on various length scales ranging from 10s of microns to ˜ 1 Å. Recently, combined electromagnetic and TEM studies on four flux-grown bicrystals have demonstrated a direct correlation between the length scale of the boundaries’ saw-tooth facet configurations and the apparent length scale of the electrical heterogeneity. In that work, enhanced critical current densities are observed at applied fields where the facet period is commensurate with the spacing of the Abrikosov flux vortices which must be pinned if higher critical current density values are recorded. To understand the microstructural origin of the flux pinning, the grain boundary topography and grain boundary dislocation (GBD) network structure of [001] tilt YBCO bicrystals were studied by TEM and HRTEM.


Author(s):  
A. Yamanaka ◽  
H. Ohse ◽  
K. Yagi

Recently current effects on clean and metal adsorbate surfaces have attracted much attention not only because of interesting phenomena but also because of practically importance in treatingclean and metal adsorbate surfaces [1-6]. In the former case, metals deposited migrate on the deposit depending on the current direction and a patch of the deposit expands on the clean surface [1]. The migration is closely related to the adsorbate structures and substrate structures including their anisotropy [2,7]. In the latter case, configurations of surface atomic steps depends on the current direction. In the case of Si(001) surface equally spaced array of monatom high steps along the [110] direction produces the 2x1 and 1x2 terraces. However, a relative terrace width of the two domain depends on the current direction; a step-up current widen terraces on which dimers are parallel to the current, while a step-down current widen the other terraces [3]. On (111) surface, a step-down current produces step bunching at temperatures between 1250-1350°C, while a step-up current produces step bunching at temperatures between 1050-1250°C [5].In the present paper, our REM observations on a current induced step bunching, started independently, are described.Our results are summarized as follows.(1) Above around 1000°C a step-up current induces step bunching. The phenomenon reverses around 1200 C; a step-down current induces step bunching. The observations agree with the previous reports [5].


Sign in / Sign up

Export Citation Format

Share Document