The Perdew–Burke–Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set

2005 ◽  
Vol 122 (23) ◽  
pp. 234102 ◽  
Author(s):  
Joachim Paier ◽  
Robin Hirschl ◽  
Martijn Marsman ◽  
Georg Kresse
2020 ◽  
Vol 978 ◽  
pp. 446-453
Author(s):  
Soumyasree Jena ◽  
Sanjoy Datta

Presence of Bismuth (Bi) leads to topologically nontrivial band structure in many materials, especially in topological insulators. Traditionally Bi is known to be a semimetal but, quite surprisingly, in a recent experiment bulk Bi has been found to be a superconductor below 0.53 mK at ambient pressure. In order to have a closer look at the electronic properties of bulk Bi in the wake of this unexpected experimental evidence of superconducting phase, we have performed density-functional-theory (DFT) based first principle calculations using plane-wave basis set and with suitable ionic pseudopotentials. We have computed the band structure, density of states and Fermi surfaces for two different type of exchange-correlation (XC) functionals, namely Perdew-Zunger (PZ) and Perdew-Burke-Ernzerhof (PBE) type. Each of these XC functional has been considered without and with spin orbit (SO) interaction. After carefully examining the energy-convergence with respect to plane wave basis set and k-points in each case, the band structure has been calculated along the path Γ-L-T-Γ. Without SO coupling, electron pocket is found near ‘L’ and exactly at ‘Г’ and hole pocket is at ‘T’ for PZ type XC functional, while in the case of PBE-type electron pocket is found exactly at ‘L’ but the hole pocket to be near to ‘T’. With SO coupling, in PZ-type, electron pocket remains at same position, but hole pocket appears only at ‘Г’ point. Finally, when SO coupling is taken into account along with PBE-type XC functional electrons and holes are found at ‘L’ and at ‘T’ respectively. Furthermore, in this case we also observe an increase in the number of holes at ‘T’.


2019 ◽  
Author(s):  
Mark Iron ◽  
Trevor Janes

A new database of transition metal reaction barrier heights – MOBH35 – is presented. Benchmark energies (forward and reverse barriers and reaction energy) are calculated using DLPNO-CCSD(T) extrapolated to the complete basis set limit using a Weizmann1-like scheme. Using these benchmark energies, the performance of a wide selection of density functional theory (DFT) exchange–correlation functionals, including the latest from the Truhlar and Head-Gordon groups, is evaluated. It was found, using the def2-TZVPP basis set, that the ωB97M-V (MAD 1.8 kcal/mol), ωB97X-V (MAD 2.1 kcal/mol) and SCAN0 (MAD 2.1 kcal/mol) hybrid functionals are recommended. The double-hybrid functionals PWPB95 (MAD 1.6 kcal/mol) and B2K-PLYP (MAD 1.8 kcal/mol) did perform slightly better but this has to be balanced by their increased computational cost.


2010 ◽  
pp. 85-135
Author(s):  
Dominik Marx ◽  
Jurg Hutter
Keyword(s):  

2018 ◽  
Vol 96 (10) ◽  
pp. 934-938
Author(s):  
Delano P. Chong

The dipole polarizabilities (α) and polarizability anisotropies (Δα) of over 20 molecules are calculated to search for negative Δα. The geometry of each molecule is first optimized at the level of CCSD(T)/cc-pVQZ. Then, the α tensors are computed both with CCSD(T)/daug-cc-pVTZ in Gaussian 09 and with the exchange-correlation potential Vxc known as SAOP in the Amsterdam density functional theory program called ADF and a large basis set called QZ3P-3DIFFUSE. In addition to the popular formula of the ΔαRaman connected with Raman spectroscopy, we also present values of an alternative definition of the polarizability anisotropy ΔαKerr connected with Kerr spectroscopy, recently proposed by Kampfrath and colleagues (2018. Chem. Phys. Lett. 692: 319). On one hand, the signs of many ΔαRaman are undetermined; on the other hand, we obtain negative ΔαKerr for more than one-half of the small molecules studied. Of the 24 molecules studied, 18 have negative ΔαKerr.


2018 ◽  
Vol 19 (8) ◽  
pp. 2346 ◽  
Author(s):  
Esko Makkonen ◽  
Patrick Rinke ◽  
Olga Lopez-Acevedo ◽  
Xi Chen

We report a combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics and time-dependent density functional (TDDFT) study of metal-mediated deoxyribonucleic acid (M-DNA) nanostructures. For the Ag + -mediated guanine tetramer, we found the maug-cc-pvdz basis set to be sufficient for calculating electronic circular dichroism (ECD) spectra. Our calculations further show that the B3LYP, CAM-B3LYP, B3LYP*, and PBE exchange-correlation functionals are all able to predict negative peaks in the measured ECD spectra within a 20 nm range. However, a spurious positive peak is present in the CAM-B3LYP ECD spectra. We trace the origins of this spurious peak and find that is likely due to the sensitivity of silver atoms to the amount of Hartree–Fock exchange in the exchange-correlation functional. Our presented approach provides guidance for future computational investigations of other Ag + -mediated DNA species.


Sign in / Sign up

Export Citation Format

Share Document