Role of Exchange-Correlation Functional in Bulk Bismuth

2020 ◽  
Vol 978 ◽  
pp. 446-453
Author(s):  
Soumyasree Jena ◽  
Sanjoy Datta

Presence of Bismuth (Bi) leads to topologically nontrivial band structure in many materials, especially in topological insulators. Traditionally Bi is known to be a semimetal but, quite surprisingly, in a recent experiment bulk Bi has been found to be a superconductor below 0.53 mK at ambient pressure. In order to have a closer look at the electronic properties of bulk Bi in the wake of this unexpected experimental evidence of superconducting phase, we have performed density-functional-theory (DFT) based first principle calculations using plane-wave basis set and with suitable ionic pseudopotentials. We have computed the band structure, density of states and Fermi surfaces for two different type of exchange-correlation (XC) functionals, namely Perdew-Zunger (PZ) and Perdew-Burke-Ernzerhof (PBE) type. Each of these XC functional has been considered without and with spin orbit (SO) interaction. After carefully examining the energy-convergence with respect to plane wave basis set and k-points in each case, the band structure has been calculated along the path Γ-L-T-Γ. Without SO coupling, electron pocket is found near ‘L’ and exactly at ‘Г’ and hole pocket is at ‘T’ for PZ type XC functional, while in the case of PBE-type electron pocket is found exactly at ‘L’ but the hole pocket to be near to ‘T’. With SO coupling, in PZ-type, electron pocket remains at same position, but hole pocket appears only at ‘Г’ point. Finally, when SO coupling is taken into account along with PBE-type XC functional electrons and holes are found at ‘L’ and at ‘T’ respectively. Furthermore, in this case we also observe an increase in the number of holes at ‘T’.

2019 ◽  
Author(s):  
Mark Iron ◽  
Trevor Janes

A new database of transition metal reaction barrier heights – MOBH35 – is presented. Benchmark energies (forward and reverse barriers and reaction energy) are calculated using DLPNO-CCSD(T) extrapolated to the complete basis set limit using a Weizmann1-like scheme. Using these benchmark energies, the performance of a wide selection of density functional theory (DFT) exchange–correlation functionals, including the latest from the Truhlar and Head-Gordon groups, is evaluated. It was found, using the def2-TZVPP basis set, that the ωB97M-V (MAD 1.8 kcal/mol), ωB97X-V (MAD 2.1 kcal/mol) and SCAN0 (MAD 2.1 kcal/mol) hybrid functionals are recommended. The double-hybrid functionals PWPB95 (MAD 1.6 kcal/mol) and B2K-PLYP (MAD 1.8 kcal/mol) did perform slightly better but this has to be balanced by their increased computational cost.


2018 ◽  
Vol 96 (10) ◽  
pp. 934-938
Author(s):  
Delano P. Chong

The dipole polarizabilities (α) and polarizability anisotropies (Δα) of over 20 molecules are calculated to search for negative Δα. The geometry of each molecule is first optimized at the level of CCSD(T)/cc-pVQZ. Then, the α tensors are computed both with CCSD(T)/daug-cc-pVTZ in Gaussian 09 and with the exchange-correlation potential Vxc known as SAOP in the Amsterdam density functional theory program called ADF and a large basis set called QZ3P-3DIFFUSE. In addition to the popular formula of the ΔαRaman connected with Raman spectroscopy, we also present values of an alternative definition of the polarizability anisotropy ΔαKerr connected with Kerr spectroscopy, recently proposed by Kampfrath and colleagues (2018. Chem. Phys. Lett. 692: 319). On one hand, the signs of many ΔαRaman are undetermined; on the other hand, we obtain negative ΔαKerr for more than one-half of the small molecules studied. Of the 24 molecules studied, 18 have negative ΔαKerr.


2018 ◽  
Vol 19 (8) ◽  
pp. 2346 ◽  
Author(s):  
Esko Makkonen ◽  
Patrick Rinke ◽  
Olga Lopez-Acevedo ◽  
Xi Chen

We report a combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics and time-dependent density functional (TDDFT) study of metal-mediated deoxyribonucleic acid (M-DNA) nanostructures. For the Ag + -mediated guanine tetramer, we found the maug-cc-pvdz basis set to be sufficient for calculating electronic circular dichroism (ECD) spectra. Our calculations further show that the B3LYP, CAM-B3LYP, B3LYP*, and PBE exchange-correlation functionals are all able to predict negative peaks in the measured ECD spectra within a 20 nm range. However, a spurious positive peak is present in the CAM-B3LYP ECD spectra. We trace the origins of this spurious peak and find that is likely due to the sensitivity of silver atoms to the amount of Hartree–Fock exchange in the exchange-correlation functional. Our presented approach provides guidance for future computational investigations of other Ag + -mediated DNA species.


2020 ◽  
Vol 34 (06) ◽  
pp. 2050035
Author(s):  
Xia Xu ◽  
Wei Zeng ◽  
Fu-Sheng Liu ◽  
Zheng-Tang Liu ◽  
Qi-Jun Liu

In this paper, the structural, electronic, elastic, mechanical and optical properties of monoclinic [Formula: see text] are studied using the first-principles density functional theory (DFT). The calculated structural parameters are consistent with the experimental data. The elastic constants of [Formula: see text] structures are calculated, indicating that [Formula: see text] shows mechanical stability and elastic anisotropy. According to the [Formula: see text] and Poisson’s ratio, monoclinic [Formula: see text] shows a brittle manner. The energy band structure, density of states, charge transfers and bond populations are given. And the band structure shows that the material is a metal conductor. Moreover, the optical properties and optical anisotropy of [Formula: see text] are shown and analyzed.


Author(s):  
Mani Shugani ◽  
Mahendra Aynyas ◽  
Sankar P. Sanyal

We have performed First-principles density functional calculation by using full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation (GGA) of B2- AlGd (Aluminum compound). The ground state properties along with electronic and elastic properties are studied. The energy ranges are given for bands which are crossing the Fermi level and explained whether the Fermi surface is formed by hole pocket or electron pocket. Bonding properties are analyzed by charge density plot. By B/GH ratio the brittleness of the material is determined.


2017 ◽  
Vol 56 (3) ◽  
Author(s):  
José-Zeferino Ramírez ◽  
Rubicelia Vargas ◽  
Itzia I. Padilla-Martínez ◽  
Anaid G. Flores-Huerta ◽  
Jorge Garza

In this work, three conformers of an aromatic amide derivative are theoretically analyzed. The theoretical methods used were based on the Kohn-Sham version of the density functional theory, considering three exchange-correlation functionals of different types: PBE, TPSS and B3LYP. The results obtained using these methods were compared to those obtained by the many-body perturbation theory to second order (MP2). All these methods where coupled with the 6-311++G(d,p) basis set. The X-ray structure was used as a starting point in the conformational search, as all the methods considered in this work had predicted that this structure would be the conformer with the highest energy, thus obtaining the first important result for this system. The second most important result discovered in this work refers to the large differences found in the predicted structures when applying DFT methods, as compared to the MP2 method. We attribute such differences to dispersion terms not included in the exchangecorrelation functionals considered; such a hypothesis is corroborated when a model system (stabilized by dispersion effects) is analyzed by applying the four theoretical methods. By incorporating dispersion effects with the exchange-correlation functional, we found they compared more favorably with the wave-function correlated method.


2020 ◽  
Vol 8 ◽  
Author(s):  
David B. Williams-Young ◽  
Wibe A. de Jong ◽  
Hubertus J. J. van Dam ◽  
Chao Yang

The predominance of Kohn–Sham density functional theory (KS-DFT) for the theoretical treatment of large experimentally relevant systems in molecular chemistry and materials science relies primarily on the existence of efficient software implementations which are capable of leveraging the latest advances in modern high-performance computing (HPC). With recent trends in HPC leading toward increasing reliance on heterogeneous accelerator-based architectures such as graphics processing units (GPU), existing code bases must embrace these architectural advances to maintain the high levels of performance that have come to be expected for these methods. In this work, we purpose a three-level parallelism scheme for the distributed numerical integration of the exchange-correlation (XC) potential in the Gaussian basis set discretization of the Kohn–Sham equations on large computing clusters consisting of multiple GPUs per compute node. In addition, we purpose and demonstrate the efficacy of the use of batched kernels, including batched level-3 BLAS operations, in achieving high levels of performance on the GPU. We demonstrate the performance and scalability of the implementation of the purposed method in the NWChemEx software package by comparing to the existing scalable CPU XC integration in NWChem.


Author(s):  
Cesar Castillo-Quevedo ◽  
Jose Luis Cabellos ◽  
Raul Aceves ◽  
Roberto Núñez-González ◽  
Alvaro Posada-Amarillas

The unfolded band structure and optical properties of Cu-doped KCl crystals were computed by first principles within the framework of density functional theory, implemented in the ABINIT electronic structure package utilizing pseudopotential approximation and a plane-wave basis set. From a theoretical point of view, Cu substitution into pristine KCl crystals requires calculation by the supercell (SC) method. This procedure shrinks the Brillouin zone, resulting in a folded band structure that is difficult to interpret. To solve this problem and gain insight into the effect of copper ions (Cu+) on electronic properties, the band structure of SC KCl:Cu was unfolded to make a direct comparison with the band structure of the primitive cell (PC) of pristine KCl. To understand the effect of Cu substitution on optical absorption, we calculated the imaginary part of the dielectric function of KCl:Cu through a sum-over-states formalism and broke it down into different band contributions by partially making an iterated cumulative sum (ICS) of selected valence and conduction bands. Consequently, we identified those interband transitions that give rise to the absorption peaks due to the Cu+ ion. These transitions involve valence and conduction bands formed by the Cu-3d and Cu-4s electronic states


2013 ◽  
Vol 10 (3) ◽  
pp. 1041-1049
Author(s):  
Baghdad Science Journal

Density Functional Theory (DFT) with B3LYP hybrid exchange-correlation functional and 3-21G basis set and semi-empirical methods (PM3) were used to calculate the energies (total energy, binding energy (Eb), molecular orbital energy (EHOMO-ELUMO), heat of formation (?Hf)) and vibrational spectra for some Tellurium (IV) compounds containing cycloctadienyl group which can use as ligands with some transition metals or essential metals of periodic table at optimized geometrical structures.


Sign in / Sign up

Export Citation Format

Share Document