Ostwald ripening of interstitial-type dislocation loops in 4H-silicon carbide

2006 ◽  
Vol 100 (5) ◽  
pp. 053521 ◽  
Author(s):  
P. O. Å. Persson ◽  
L. Hultman ◽  
M. S. Janson ◽  
A. Hallén
2014 ◽  
Vol 455 (1-3) ◽  
pp. 253-257 ◽  
Author(s):  
Farong Wan ◽  
Qian Zhan ◽  
Yi Long ◽  
Shanwu Yang ◽  
Gaowei Zhang ◽  
...  

2022 ◽  
Vol 71 (1) ◽  
pp. 016102-016102
Author(s):  
Li Ran-Ran ◽  
◽  
Zhang Yi-Fan ◽  
Yin Yu-Peng ◽  
Watanabe Hideo ◽  
...  

1998 ◽  
Vol 73 (20) ◽  
pp. 2956-2958 ◽  
Author(s):  
Y. L. Huang ◽  
M. Seibt ◽  
B. Plikat

1995 ◽  
Vol 64 (3) ◽  
pp. 699-701 ◽  
Author(s):  
Kaoru Mizuno ◽  
Kotaro Ono ◽  
Kazuyoshi Ito ◽  
Takao Kino

2000 ◽  
Vol 610 ◽  
Author(s):  
Alain Claverie ◽  
Filadelfo Cristiano ◽  
Benjamin Colombeau ◽  
Nicholas Cowern

AbstractIn this paper, we discuss the mechanisms by which small clusters evolve through “magic” sizes into {113} defects and then, at sufficiently high dose levels, transform into dislocation loops of two types. This ripening process is mediated by the interchange of free Si(int)s between different extended defects, leading to a decrease of their formation energy. The calculation of the supersaturation of free Si-interstitials in dynamical equilibrium with these defects shows a hierarchy of levels of nonequilibrium diffusion, ranging from supersaturations S of about 106 in the presence of small clusters, through 103 in the presence of {113} defects, to S in the range 100 down to 1 as loops are formed, evolve and finally evaporate. A detailed analysis of defect energetics has been carried out and it is shown that Ostwald ripening is the key concept for understanding and modelling defect interactions during TED of dopants in silicon.


1997 ◽  
Vol 490 ◽  
Author(s):  
P. S. Plekhanov ◽  
U. M. Gösele ◽  
T. Y. Tan

ABSTRACTNucleation of voids and vacancy-type dislocation loops in Si under vacancy supersaturation conditions has been considered. Based upon nucleation barrier calculations, it has been found that voids can be nucleated, but not dislocation loops. The homogeneous nucleation rate of voids has been calculated for different temperatures by assuming different enthalpy values of Si vacancy formation. The process of void growth due to precipitation of vacancies has been numerically simulated. Comparing results of the nucleation and the growth modeling and taking into account the competition between the two processes, the limited time available, and the crystal cooling rate after growth, it has been shown that homogeneous nucleation of voids to experimentally observed densities and void growth to observed sizes is possible if enthalpy of Si vacancy formation is within the range of 2.9 to 3.6 eV with the nucleation temperature in the range of 980–1080 °C.


1996 ◽  
Vol 438 ◽  
Author(s):  
H. Weishart ◽  
J. Schoneich ◽  
M. Voelskow ◽  
W. Skorupa

AbstractWe studied high dose implantation of tungsten into 6H-silicon carbide in order to synthesize an electrically conductive layer. Implantation was performed at 200 keV with a dose of 1.2x 1017 WIcm 2 at temperatures between 200°C and 400°C. The influence of implantation temperature on the distribution of W in SiC was investigated and compared to results obtained earlier from room temperature (RT) and 500°C implants. Rutherford backscattering spectrometry (RBS) was employed to study the structure and composition of the implanted layers. Implantation at temperatures between RT and 300°C did not influence the depth distribution of C, Si and W. The W depth profile shows a conventional Gaussian shape. Implanting at higher temperatures led to a more confined W rich layer in the SiC. This confinement is explained by Ostwald ripening which is enabled during implantation at temperatures above 300°C. The depth of the implantation induced damage decreases slightly with increasing implantation temperature, except for 400°C implantation. The amount of damage, however, is significantly reduced only for implantation at 500°C.


2018 ◽  
Vol 32 (5) ◽  
pp. 566-572
Author(s):  
Yu-Feng Du ◽  
Li-Juan Cui ◽  
Wen-Tuo Han ◽  
Fa-Rong Wan

Sign in / Sign up

Export Citation Format

Share Document