Fourth-order nonlinear evolution equations for a capillary-gravity wave packet in the presence of another wave packet in deep water

2007 ◽  
Vol 19 (9) ◽  
pp. 097101 ◽  
Author(s):  
Suma Debsarma ◽  
K. P. Das
2002 ◽  
Vol 43 (4) ◽  
pp. 513-524 ◽  
Author(s):  
Suma Debsarma ◽  
K.P. Das

AbstractFor a three-dimensional gravity capillary wave packet in the presence of a thin thermocline in deep water two coupled nonlinear evolution equations correct to fourth order in wave steepness are obtained. Reducing these two equations to a single equation for oblique plane wave perturbation, the stability of a uniform gravity-capillary wave train is investigated. The stability and instability regions are identified. Expressions for the maximum growth rate of instability and the wavenumber at marginal stability are obtained. The results are shown graphically.


2015 ◽  
Vol 20 (2) ◽  
pp. 267-282
Author(s):  
A.K. Dhar ◽  
J. Mondal

Abstract Fourth order nonlinear evolution equations, which are a good starting point for the study of nonlinear water waves, are derived for deep water surface capillary gravity waves in the presence of second waves in which air is blowing over water. Here it is assumed that the space variation of the amplitude takes place only in a direction along which the group velocity projection of the two waves overlap. A stability analysis is made for a uniform wave train in the presence of a second wave train. Graphs are plotted for the maximum growth rate of instability wave number at marginal stability and wave number separation of fastest growing sideband component against wave steepness. Significant improvements are noticed from the results obtained from the two coupled third order nonlinear Schrödinger equations.


Author(s):  
Sudebi Bhattacharyya ◽  
K. P. Das

AbstractTwo coupled nonlinear evolution equations correct to fourth order in wave steepness are derived for a three-dimensional wave packet in the presence of a thin thermocline. These two coupled equations are reduced to a single equation on the assumption that the space variation of the amplitudes takes place along a line making an arbitrary fixed angle with the direction of propagation of the wave. This single equation is used to study the stability of a uniform wave train. Expressions for maximum growth rate of instability and wave number at marginal stability are obtained. Some of the results are shown graphically. It is found that a thin thermocline has a stabilizing influence and the maximum growth rate of instability decreases with the increase of thermocline depth.


Sign in / Sign up

Export Citation Format

Share Document