scholarly journals The nonlinear evolution equations of fourth-order for two surface gravity waves including the effect of air flowing over water

2021 ◽  
Vol 1850 (1) ◽  
pp. 012130
Author(s):  
A.K. Dhar ◽  
Shibam Manna
2017 ◽  
Vol 812 ◽  
pp. 681-697 ◽  
Author(s):  
Tore Magnus A. Taklo ◽  
Karsten Trulsen ◽  
Harald E. Krogstad ◽  
José Carlos Nieto Borge

Using a nonlinear evolution equation we examine the dependence of the dispersion of directional surface gravity waves on the Benjamin–Feir index (BFI) and crest length. A parameter for describing the deviation between the dispersion of simulated waves and the theoretical linear dispersion relation is proposed. We find that for short crests the magnitude of the deviation parameter is low while for long crests the magnitude is high and depends on the BFI. In the present paper we also consider laboratory data of directional waves from the Marine Research Institute of the Netherlands (MARIN). The MARIN data confirm the simulations for three cases of BFI and crest length.


Author(s):  
Sudebi Bhattacharyya ◽  
K. P. Das

AbstractThe effect of randomness on the stability of deep water surface gravity waves in the presence of a thin thermocline is studied. A previously derived fourth order nonlinear evolution equation is used to find a spectral transport equation for a narrow band of surface gravity wave trains. This equation is used to study the stability of an initially homogeneous Lorentz shape of spectrum to small long wave-length perturbations for a range of spectral widths. The growth rate of the instability is found to decrease with the increase of spectral widths. It is found that the fourth order term in the evolution equation produces a decrease in the growth rate of the instability. There is stability if the spectral width exceeds a certain critical value. For a vanishing bandwidth the deterministic growth rate of the instability is recovered. Graphs have been plotted showing the variations of the growth rate of the instability against the wavenumber of the perturbation for some different values of spectral width, thermocline depth, angle of perturbation and wave steepness.


2002 ◽  
Vol 43 (4) ◽  
pp. 513-524 ◽  
Author(s):  
Suma Debsarma ◽  
K.P. Das

AbstractFor a three-dimensional gravity capillary wave packet in the presence of a thin thermocline in deep water two coupled nonlinear evolution equations correct to fourth order in wave steepness are obtained. Reducing these two equations to a single equation for oblique plane wave perturbation, the stability of a uniform gravity-capillary wave train is investigated. The stability and instability regions are identified. Expressions for the maximum growth rate of instability and the wavenumber at marginal stability are obtained. The results are shown graphically.


Author(s):  
Sudebi Bhattacharyya ◽  
K. P. Das

AbstractTwo coupled nonlinear evolution equations correct to fourth order in wave steepness are derived for a three-dimensional wave packet in the presence of a thin thermocline. These two coupled equations are reduced to a single equation on the assumption that the space variation of the amplitudes takes place along a line making an arbitrary fixed angle with the direction of propagation of the wave. This single equation is used to study the stability of a uniform wave train. Expressions for maximum growth rate of instability and wave number at marginal stability are obtained. Some of the results are shown graphically. It is found that a thin thermocline has a stabilizing influence and the maximum growth rate of instability decreases with the increase of thermocline depth.


Sign in / Sign up

Export Citation Format

Share Document