An adaptive time step scheme for a system of stochastic differential equations with multiple multiplicative noise: Chemical Langevin equation, a proof of concept

2008 ◽  
Vol 128 (1) ◽  
pp. 014103 ◽  
Author(s):  
Vassilios Sotiropoulos ◽  
Yiannis N. Kaznessis
Author(s):  
Adrien Laurent ◽  
Gilles Vilmart

AbstractWe derive a new methodology for the construction of high-order integrators for sampling the invariant measure of ergodic stochastic differential equations with dynamics constrained on a manifold. We obtain the order conditions for sampling the invariant measure for a class of Runge–Kutta methods applied to the constrained overdamped Langevin equation. The analysis is valid for arbitrarily high order and relies on an extension of the exotic aromatic Butcher-series formalism. To illustrate the methodology, a method of order two is introduced, and numerical experiments on the sphere, the torus and the special linear group confirm the theoretical findings.


2019 ◽  
Vol 81 (4) ◽  
pp. 1295-1309 ◽  
Author(s):  
Yanyan Shi ◽  
Yajuan Sun ◽  
Yang He ◽  
Hong Qin ◽  
Jian Liu

2019 ◽  
Vol 25 ◽  
pp. 71
Author(s):  
Viorel Barbu

One introduces a new concept of generalized solution for nonlinear infinite dimensional stochastic differential equations of subgradient type driven by linear multiplicative Wiener processes. This is defined as solution of a stochastic convex optimization problem derived from the Brezis-Ekeland variational principle. Under specific conditions on nonlinearity, one proves the existence and uniqueness of a variational solution which is also a strong solution in some significant situations. Applications to the existence of stochastic total variational flow and to stochastic parabolic equations with mild nonlinearity are given.


2006 ◽  
Vol 134 (10) ◽  
pp. 3006-3014 ◽  
Author(s):  
James A. Hansen ◽  
Cecile Penland

Abstract The delicate (and computationally expensive) nature of stochastic numerical modeling naturally leads one to look for efficient and/or convenient methods for integrating stochastic differential equations. Concomitantly, one may wish to sensibly add stochastic terms to an existing deterministic model without having to rewrite that model. In this note, two possibilities in the context of the fourth-order Runge–Kutta (RK4) integration scheme are examined. The first approach entails a hybrid of deterministic and stochastic integration schemes. In these examples, the hybrid RK4 generates time series with the correct climatological probability distributions. However, it is doubtful that the resulting time series are approximate solutions to the stochastic equations at every time step. The second approach uses the standard RK4 integration method modified by appropriately scaling stochastic terms. This is shown to be a special case of the general stochastic Runge–Kutta schemes considered by Ruemelin and has global convergence of order one. Thus, it gives excellent results for cases in which real noise with small but finite correlation time is approximated as white. This restriction on the type of problems to which the stochastic RK4 can be applied is strongly compensated by its computational efficiency.


Sign in / Sign up

Export Citation Format

Share Document