Surface plasmon excitation of Au and Ag in scanning probe energy loss spectroscopy

2008 ◽  
Vol 93 (21) ◽  
pp. 213109 ◽  
Author(s):  
A. Pulisciano ◽  
S. J. Park ◽  
R. E. Palmer
2017 ◽  
Vol 373 ◽  
pp. 309-312
Author(s):  
Shimpei Iida ◽  
Hiroki Terabe ◽  
Takayuki Tachibana ◽  
Ken Wada ◽  
Izumi Mochizuki ◽  
...  

We have studied the emission of ortho-positronium from alkali-metal coated polycrystalline tungsten surfaces. The positronium time-of-flight spectra show that the yield of the 5 eV positronium component increases by alkali-metal coating. In addition, a low energy positronium component appears by Cs or K coating. We suggest that this component is due to positron energy loss by inter-band transition or surface plasmon excitation.


Author(s):  
Daniel UGARTE

Small particles exhibit chemical and physical behaviors substantially different from bulk materials. This is due to the fact that boundary conditions can induce specific constraints on the observed properties. As an example, energy loss experiments carried out in an analytical electron microscope, constitute a powerful technique to investigate the excitation of collective surface modes (plasmons), which are modified in a limited size medium. In this work a STEM VG HB501 has been used to study the low energy loss spectrum (1-40 eV) of silicon spherical particles [1], and the spatial localization of the different modes has been analyzed through digitally acquired energy filtered images. This material and its oxides have been extensively studied and are very well characterized, because of their applications in microelectronics. These particles are thus ideal objects to test the validity of theories developed up to now.Typical EELS spectra in the low loss region are shown in fig. 2 and energy filtered images for the main spectral features in fig. 3.


2013 ◽  
Vol E96.C (3) ◽  
pp. 385-388 ◽  
Author(s):  
Hathaithip NINSONTI ◽  
Weerasak CHOMKITICHAI ◽  
Akira BABA ◽  
Wiyong KANGWANSUPAMONKON ◽  
Sukon PHANICHPHANT ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1333
Author(s):  
Leeju Singh ◽  
Nicolò Maccaferri ◽  
Denis Garoli ◽  
Yuri Gorodetski

The phenomenon of coupling between light and surface plasmon polaritons requires specific momentum matching conditions. In the case of a single scattering object on a metallic surface, such as a nanoparticle or a nanohole, the coupling between a broadband effect, i.e., scattering, and a discrete one, such as surface plasmon excitation, leads to Fano-like resonance lineshapes. The necessary phase matching requirements can be used to engineer the light–plasmon coupling and to achieve a directional plasmonic excitation. Here, we investigate this effect by using a chiral nanotip to excite surface plasmons with a strong spin-dependent azimuthal variation. This effect can be described by a Fano-like interference with a complex coupling factor that can be modified thanks to a symmetry breaking of the nanostructure.


2021 ◽  
Vol 13 (10) ◽  
pp. 12550-12561
Author(s):  
Paul A. DeSario ◽  
Wesley O. Gordon ◽  
Alex Balboa ◽  
Ashley M. Pennington ◽  
Catherine L. Pitman ◽  
...  

2011 ◽  
Vol E94-C (2) ◽  
pp. 196-197 ◽  
Author(s):  
Kazunari SHINBO ◽  
Yuta HIRANO ◽  
Masayuki SAKAI ◽  
Masahiro MINAGAWA ◽  
Yasuo OHDAIRA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document