Minority carrier lifetime in GaP grown by liquid phase epitaxy for high temperature applications

1982 ◽  
Vol 53 (5) ◽  
pp. 3709-3712 ◽  
Author(s):  
P. L. Gourley ◽  
L. R. Dawson
1995 ◽  
Vol 24 (5) ◽  
pp. 539-544 ◽  
Author(s):  
M. C. Chen ◽  
L. Colombo ◽  
J. A. Dodge ◽  
J. H. Tregilgas

2005 ◽  
Vol 98 (7) ◽  
pp. 073708 ◽  
Author(s):  
Yusuke Satoh ◽  
Noritaka Usami ◽  
Wugen Pan ◽  
Kozo Fujiwara ◽  
Kazuo Nakajima ◽  
...  

2013 ◽  
Vol 1538 ◽  
pp. 329-333 ◽  
Author(s):  
Lin Cheng ◽  
Michael J. O’Loughlin ◽  
Alexander V. Suvorov ◽  
Edward R. Van Brunt ◽  
Albert A. Burk ◽  
...  

ABSTRACTThis paper details the development of a technique to improve the minority carrier lifetime of 4H-SiC thick (≥ 100 μm) n-type epitaxial layers through multiple thermal oxidations. A steady improvement in lifetime is seen with each oxidation step, improving from a starting ambipolar carrier lifetime of 1.09 µs to 11.2 µs after 4 oxidation steps and a high-temperature anneal. This multiple-oxidation lifetime enhancement technique is compared to a single high-temperature oxidation step, and a carbon implantation followed by a high-temperature anneal, which are traditional ways to achieve high ambipolar lifetime in 4H-SiC n-type epilayers. The multiple oxidation treatment resulted in a high minimum carrier lifetime of 6 µs, compared to < 2 µs for other treatments. The implications of lifetime enhancement to high-voltage/high-current 4H-SiC power devices are also discussed.


1990 ◽  
Vol 198 ◽  
Author(s):  
R. Venkatasubramanian ◽  
M.L. Timmons ◽  
S. Bothra ◽  
J.M. Borrego

ABSTRACTGrowth of Ge on GaAs at reasonably high temperatures, which produce better crystallinity in the Ge, presents serious difficulties due to the dissociation of the GaAs substrate. In this paper, we describe the growth of a lowtemperature buffer layer of Ge on GaAs that prevents decomposition of the GaAs during high-temperature growth of Ge. Using this approach, we present the first report of highly specular, mass-transport-limited high-temperature growth of Ge on GaAs that is comparable to the homoepitaxy of Ge. The factors affecting the minority-carrier lifetime of Ge on GaAs, using such an epitaxial growth technique, were studied with a non-invasive microwave technique. Lifetime variations, from very low values to about 0.45 μsec, were obtained as a function of the growth conditions. Significantly, the removal of the surface oxide on the GaAs substrate prior to low-temperature buffer-layer growth, terminating the flow of germane(GeH4) during the ramp to high growth temperatures, thinner buffer layers, and high-temperature growth of Ge were found to be important for obtaining long lifetimes.


1986 ◽  
Vol 90 ◽  
Author(s):  
J. S. Chen ◽  
J. Bajaj ◽  
W. E. Tennant ◽  
D. S. Lo ◽  
M. Brown ◽  
...  

ABSTRACTMinority carrier lifetime measurements at 77K were carried out in ptype liquid phase epitaxial (LPE) Hg 1-xCdx Te/CdTe (x = 0.22) using the photoconductive decay technique. Lifetimes of 20 to 7000 ns were obtained in samples with hole concentrations, p, in the range 1014 to 1016 cm-3. The hole concentrations were determineg by analyzing the Hall data using a double-layer model. It was found that the minority carrier lifetime is inversely proportional to p01.86. This result demonstrates that the Auger mechanism may be the dominant recombination process in p-type LPE Hg0.78 Cd0.22Te/CdTe. The temperature dependence of minority carrier lifetime was also measured between 10 and 200K for several samples.


2020 ◽  
Vol 1014 ◽  
pp. 137-143
Author(s):  
Wen Ting Zhang ◽  
Yun Lai An ◽  
Yi Ying Zha ◽  
Ling Sang ◽  
Jing Hua Xia ◽  
...  

A novel process is developed for minority carrier lifetime enhancement in ultra-high 4H-SiC PiN diodes. It comprises two separate processes. Firstly, the ultra-thick epitaxial grown drift layer (200μm) covered with a protective thin carbon film is subject to a 1500°C high-temperature anneal process in Ar atmosphere for 2 hours. Secondly, a surface passivation process is adopted to reduce the surface recombination rate. μ-PCD tests show that after high-temperature anneal, the thick drift layer shows a minority carrier lifetime increase to about 1.6 μs. PiN diodes based on the novel process are fabricated and their electric characteristics are measured. Results show a low specific on-resistance of 16.3 mΩ·cm2 at 25°C and 14 mΩ·cm2 at 125 °C. Compared with simulation results, it is shown that its effective minority carrier lifetime increase to about 5μs .Our study demonstrates that the developed novel process is effective in minority carrier lifetime enhancement in ultra-voltage 4H-SiC PiN diodes.


Sign in / Sign up

Export Citation Format

Share Document