Oxygen behavior during titanium silicide formation by rapid thermal annealing

1987 ◽  
Vol 62 (10) ◽  
pp. 4319-4321 ◽  
Author(s):  
R. Pantel ◽  
D. Levy ◽  
D. Nicolas ◽  
J. P. Ponpon
1985 ◽  
Vol 38 (1) ◽  
pp. 23-29 ◽  
Author(s):  
D. Levy ◽  
J. P. Ponpon ◽  
A. Grob ◽  
J. J. Grob ◽  
R. Stuck

1992 ◽  
Vol 72 (1) ◽  
pp. 297-299 ◽  
Author(s):  
J. S. Choi ◽  
Y. S. Hwang ◽  
S. H. Paek ◽  
J. E. Oh ◽  
T. U. Sim ◽  
...  

2002 ◽  
Vol 716 ◽  
Author(s):  
G.Z. Pan ◽  
E.W. Chang ◽  
Y. Rahmat-Samii

AbstractWe comparatively studied the formation of ultra thin Co silicides, Co2Si, CoSi and CoSi2, with/without a Ti-capped and Ti-mediated layer by using rapid thermal annealing in a N2 ambient. Four-point-probe sheet resistance measurements and plan-view electron diffraction were used to characterize the silicides as well as the epitaxial characteristics of CoSi2 with Si. We found that the formation of the Co silicides and their existing duration are strongly influenced by the presence of a Ti-capped and Ti-mediated layer. A Ti-capped layer promotes significantly CoSi formation but suppresses Co2Si, and delays CoSi2, which advantageously increases the silicidation-processing window. A Ti-mediated layer acting as a diffusion barrier to the supply of Co suppresses the formation of both Co2Si and CoSi but energetically favors directly forming CoSi2. Plan-view electron diffraction studies indicated that both a Ti-capped and Ti-mediated layer could be used to form ultra thin epitaxial CoSi2 silicide.


1987 ◽  
Vol 92 ◽  
Author(s):  
E. Ma ◽  
M. Natan ◽  
B.S. Lim ◽  
M-A. Nicolet

ABSTRACTSilicide formation induced by rapid thermal annealing (RTA) and conventional furnace annealing (CFA) in bilayers of sequentially deposited films of amorphous silicon and polycrystalline Co or Ni is studied with RBS, X-ray diffraction and TEM. Particular attention is paid to the reliability of the RTA temperature measurements in the study of the growth kinetics of the first interfacial compound, Co2Si and Ni2Si, for both RTA and CFA. It is found that the same diffusion-controlled kinetics applies for the silicide formation by RTA in argon and CFA in vacuum with a common activation energy of 2.1+0.2eV for Co2Si and 1.3+0.2eV for Ni Si. Co and Ni atoms are the dominant diffusing species; during silicide formation by both RTA and CFA. The microstructures of the Ni-silicide formed by the two annealing techniques, however, differs considerably from each other, as revealed by cross-sectional TEM studies.


1994 ◽  
Vol 299 ◽  
Author(s):  
M. Fernandez ◽  
T. Rodriguez ◽  
A. Almendra ◽  
J. Jimenez-Leube ◽  
H. Wolters

AbstractIridium silicide formation by rapid thermal annealing (RTA) in an Ar atmosphere or under vacuum has been investigated. The evolution of the silicide front and the identification of the phases were monitored by Auger Electron Spectroscopy (AES) and Rutherford Backscattering Spectrometry (RBS). Oxygen was incorporated during the RTA process in an Ar atmosphere. The oxygen effect is to slow down the silicide formation and eventually to stop it. In all the cases, the oxygen piled-up at the iridium-iridium silicide interface. No distinguishable phase was formed by RTA in an Ar atmosphere. No oxygen contarsi'nation was detected when the RTA was performed under a vacuum lower than 2×10−5 Torr. In this case Ir1Si1 and Ir1Si1.75 phases were formed.


1991 ◽  
Vol 224 ◽  
Author(s):  
Po-Ching Chen ◽  
Jian-Yang Lin ◽  
Huey-Liang Hwang

AbstractTitanium silicide was formed on the top of Si wafers by arsenic ion beam mixing and rapid thermal annealing. Three different arsenic-ion mixing conditions were examined in this work. The sheet resistance, residue As concentration post annealing and TiSi2 phase were characterized by using the* four-point probe, RBS and electron diffraction, respectively. TiSi2 of C54 phase was identified in the doubly implanted samples. The thickness of the Ti silicide and the TiSi2/Si interface were observed by the cross-sectional TEM.


Sign in / Sign up

Export Citation Format

Share Document