Photoinduced charge transfer and photovoltaic energy conversion in self-assembled N,N′-dioctyl-3,4,9,10-perylenedicarboximide nanoribbons

2010 ◽  
Vol 97 (4) ◽  
pp. 043306 ◽  
Author(s):  
S. Karak ◽  
S. K. Ray ◽  
A. Dhar
Nano Letters ◽  
2006 ◽  
Vol 6 (8) ◽  
pp. 1789-1793 ◽  
Author(s):  
Peng Wang ◽  
Agnese Abrusci ◽  
Henry M. P. Wong ◽  
Mattias Svensson ◽  
Mats R. Andersson ◽  
...  

2015 ◽  
Vol 44 (26) ◽  
pp. 11725-11731 ◽  
Author(s):  
Haimei Fan ◽  
Dejun Wang ◽  
Zhipeng Liu ◽  
Tengfeng Xie ◽  
Yanhong Lin

A series of BiVO4/Bi2WO6 microspheres was synthesized by a simple, one-pot, template-free, solvothermal method.


2009 ◽  
Vol 94 (7) ◽  
pp. 073302 ◽  
Author(s):  
Byoungnam Park ◽  
Peerasak Paoprasert ◽  
Padma Gopalan ◽  
T. F. Kuech ◽  
Paul G. Evans

2006 ◽  
Vol 128 (2) ◽  
pp. 649-657 ◽  
Author(s):  
Edwin H. A. Beckers ◽  
Stefan C. J. Meskers ◽  
Albertus P. H. J. Schenning ◽  
Zhijian Chen ◽  
Frank Würthner ◽  
...  

1996 ◽  
Vol 93 ◽  
pp. 1697-1713 ◽  
Author(s):  
P Changenet ◽  
P Plaza ◽  
MM Martin ◽  
YH Meyer ◽  
W Rettig

2020 ◽  
Author(s):  
Zhengqing Tong ◽  
Margaret S. Cheung ◽  
Barry D. Dunietz ◽  
Eitan Geva ◽  
Xiang Sun

The nonequilibrium Fermi’s golden rule (NE-FGR) describes the time-dependent rate coefficient for electronic transitions, when the nuclear degrees of freedom start out in a <i>nonequilibrium</i> state. In this letter, the linearized semiclassical (LSC) approximation of the NE-FGR is used to calculate the photoinduced charge transfer rates in the carotenoid-porphyrin-C<sub>60</sub> molecular triad dissolved in explicit tetrahydrofuran. The initial nonequilibrium state corresponds to impulsive photoexcitation from the equilibrated ground-state to the ππ* state, and the porphyrin-to-C<sub>60</sub> and the carotenoid-to-C<sub>60</sub> charge transfer rates are calculated. Our results show that accounting for the nonequilibrium nature of the initial state significantly enhances the transition rate of the porphyrin-to-C<sub>60</sub> CT process. We also derive the instantaneous Marcus theory (IMT) from LSC NE-FGR, which casts the CT rate coefficients in terms of a Marcus-like expression, with explicitly time-dependent reorganization energy and reaction free energy. IMT is found to reproduce the CT rates in the system under consideration remarkably well.


Sign in / Sign up

Export Citation Format

Share Document