scholarly journals Matter wave switching in Bose–Einstein condensates via intensity redistribution soliton interactions

2011 ◽  
Vol 52 (2) ◽  
pp. 023515 ◽  
Author(s):  
S. Rajendran ◽  
M. Lakshmanan ◽  
P. Muruganandam
2005 ◽  
Vol 19 (22) ◽  
pp. 3415-3473 ◽  
Author(s):  
FATKHULLA Kh. ABDULLAEV ◽  
ARNALDO GAMMAL ◽  
ANATOLY M. KAMCHATNOV ◽  
LAURO TOMIO

Recent experimental and theoretical advances in the creation and description of bright matter wave solitons are reviewed. Several aspects are taken into account, including the physics of soliton train formation as the nonlinear Fresnel diffraction, soliton-soliton interactions, and propagation in the presence of inhomogeneities. The generation of stable bright solitons by means of Feshbach resonance techniques is also discussed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maike D. Lachmann ◽  
Holger Ahlers ◽  
Dennis Becker ◽  
Aline N. Dinkelaker ◽  
Jens Grosse ◽  
...  

AbstractBose-Einstein condensates (BECs) in free fall constitute a promising source for space-borne interferometry. Indeed, BECs enjoy a slowly expanding wave function, display a large spatial coherence and can be engineered and probed by optical techniques. Here we explore matter-wave fringes of multiple spinor components of a BEC released in free fall employing light-pulses to drive Bragg processes and induce phase imprinting on a sounding rocket. The prevailing microgravity played a crucial role in the observation of these interferences which not only reveal the spatial coherence of the condensates but also allow us to measure differential forces. Our work marks the beginning of matter-wave interferometry in space with future applications in fundamental physics, navigation and earth observation.


2012 ◽  
Vol 67 (10-11) ◽  
pp. 525-533
Author(s):  
Zhi-Qiang Lin ◽  
Bo Tian ◽  
Ming Wang ◽  
Xing Lu

Under investigation in this paper is a variable-coefficient coupled Gross-Pitaevskii (GP) system, which is associated with the studies on atomic matter waves. Through the Painlev´e analysis, we obtain the constraint on the variable coefficients, under which the system is integrable. The bilinear form and multi-soliton solutions are derived with the Hirota bilinear method and symbolic computation. We found that: (i) in the elastic collisions, an external potential can change the propagation of the soliton, and thus the density of the matter wave in the two-species Bose-Einstein condensate (BEC); (ii) in the shape-changing collision, the solitons can exchange energy among different species, leading to the change of soliton amplitudes.We also present the collisions among three solitons of atomic matter waves.


2022 ◽  
Author(s):  
Yajie Yang ◽  
Ying Dong

Abstract The gain or loss effect on the dynamics of the matter-wave solitons in three-component Bose-Einstein condensates with time-modulated interactions trapped in parabolic external potentials are investigated analytically. Some exact matter-wave soliton solutions to the three-coupled Gross-Pitaevskii equation describing the three-component Bose-Einstein condensates are constructed by similarity transformation. The dynamical properties of the matter-wave solitons are analyzed graphically, and the effects of the gain or loss parameter and the frequency of the external potentials on the matter-wave solitons are explored. It is shown that the gain coefficient makes the atom condensate to absorb energy from the background, while the loss coefficient brings about the collapse of the condensate.


2010 ◽  
Vol 24 (30) ◽  
pp. 2911-2920 ◽  
Author(s):  
ALAIN MOÏSE DIKANDÉ ◽  
ISAIAH NDIFON NGEK ◽  
JOSEPH EBOBENOW

A theoretical scheme for an experimental implementation involving bisolitonic matter waves from an attractive Bose–Einstein condensate, is considered within the framework of a non-perturbative approach to the associate Gross–Pitaevskii equation. The model consists of a single condensate subjected to an expulsive harmonic potential creating a double-condensate structure, and a gravitational potential that induces atomic exchanges between the two overlapping post condensates. Using a non-isospectral scattering transform method, exact expressions for the bright-matter–wave bisolitons are found in terms of double-lump envelopes with the co-propagating pulses displaying more or less pronounced differences in their widths and tails depending on the mass of atoms composing the condensate.


2014 ◽  
Vol 28 (04) ◽  
pp. 1450003 ◽  
Author(s):  
DIDIER BELOBO BELOBO ◽  
GERMAIN HUBERT BEN-BOLIE ◽  
TIMOLÉON CRÉPIN KOFANÉ

The modulational instability (MI) of binary condensates with cubic-quintic nonlinearities is investigated. Using a linear stability analysis, a gain of instability is derived then, effects of the quintic nonlinearities on the instability gain are identified. To be precise, attractive intraspecie quintic nonlinearities enhance the instability, while repulsive quintic intraspecie nonlinearities soften the instability. Besides, small attractive and large repulsive quintic inter-species nonlinearities increase the instability. Numerical experiments quite well corroborate the analytical predictions. Further numerical results show effects of the cubic and the quintic nonlinearities on the propagation of trains of bright solitons generated.


Sign in / Sign up

Export Citation Format

Share Document