scholarly journals An improved method for magnetic flux density visualization using three‐dimensional edge finite element method

1994 ◽  
Vol 75 (10) ◽  
pp. 6042-6044
Author(s):  
Vlatko Čingoski ◽  
Hideo Yamashita
Author(s):  
Masaaki Matsumoto ◽  
Takahiko Tanahashi

It is well known that the vector finite element method is one of the powerful tools for solving electromagnetic problems. The vector shape functions that are consist of the facet and the edge vector shape functions have a lot of characteristics. One of them is automatic conservation of the magnetic flux density in analyzing the Induction equations without iterative correction. In the present paper the vector finite element method is applied to the problems of magnetohydrodynamics. Three-dimensional natural convection in a cavity under a constant magnetic field is analyzed numerically using the GSMAC finite element method for flow field and temperature field and the vector finite element method for the Induction equations. The computational results are good agreement with those obtained using B method that is one of the iterative methods to satisfy the solenoidal condition for the magnetic flux density of the Induction equations.


2021 ◽  
Vol 11 (21) ◽  
pp. 10334
Author(s):  
Wen-Ching Chang ◽  
Cheng-Chien Kuo

Power transformers play an indispensable component in AC transmission systems. If the operating condition of a power transformer can be accurately predicted before the equipment is operated, it will help transformer manufacturers to design optimized power transformers. In the optimal design of the power transformer, the design value of the magnetic flux density in the core is important, and it affects the efficiency, cost, and life cycle. Therefore, this paper uses the software of ANSYS Maxwell to solve the instantaneous magnetic flux density distribution, core loss distribution, and total iron loss of the iron core based on the finite element method in the time domain. . In addition, a new external excitation equation is proposed. The new external excitation equation can improve the accuracy of the simulation results and reduce the simulation time. Finally, the three-phase five-limb transformer is developed, and actually measures the local magnetic flux density and total core loss to verify the feasibility of the proposed finite element method of model and simulation parameters.


2017 ◽  
Vol 68 (1) ◽  
Author(s):  
Mitja Breznik ◽  
Viktor Goričan ◽  
Anton Hamler ◽  
Selma Čorović ◽  
Damijan Miljavec

AbstractThis paper presents magnetic flux density behaviour in laminated electrical sheets which affects the results and precision of iron losses calculation in imbedded permanent magnet (IPM) machine. Objective of the research was to analyse all the influential phenomena that were identified through iron loss models analysis, finite element method simulations and iron loss measurements. The presence of phenomena such as harmonic content and rotational magnetic fields are confirmed with finite element method analysis of concentrated and distributed winding IPM machine. A significant magnetic flux density ripple in the rotor of concentrated winding IPM machine in comparison to distributed winding IPM machine is revealed and analysed. Behaviour that affects iron loss in the rotor of synchronous machines in the absence of first order harmonic is analysed. The DC level added to alternating magnetic flux density was used in experiment to mimic magnetic behaviour on the rotor of IPM machine and further to calculate iron losses.


2016 ◽  
Vol 856 ◽  
pp. 184-189 ◽  
Author(s):  
Emil Mechkov ◽  
Raina Tzeneva ◽  
Valentin Mateev ◽  
Ivan Yatchev

The electromagnetic field of the active part of oil-immersed transformers 160kVA and 630kVA has been modelled in the present paper. Finite element method and ANSYS program have been employed for the field modelling. Based on the created model, the field distribution with values of the magnetic flux density has been obtained, as well as the Joule losses have been calculated. Two variants of the model - with and without tank are studied and compared.


2017 ◽  
Vol 68 (1) ◽  
pp. 23-30
Author(s):  
Mitja Breznik ◽  
Viktor Goričan ◽  
Anton Hamler ◽  
Selma Čorović ◽  
Damijan Miljavec

Abstract This paper presents magnetic flux density behaviour in laminated electrical sheets which affects the results and precision of iron losses calculation in imbedded permanent magnet (IPM) machine. Objective of the research was to analyse all the influential phenomena that were identified through iron loss models analysis, finite element method simulations and iron loss measurements. The presence of phenomena such as harmonic content and rotational magnetic fields are confirmed with finite element method analysis of concentrated and distributed winding IPM machine. A significant magnetic flux density ripple in the rotor of concentrated winding IPM machine in comparison to distributed winding IPM machine is revealed and analysed. Behaviour that affects iron loss in the rotor of synchronous machines in the absence of first order harmonic is analysed. The DC level added to alternating magnetic flux density was used in experiment to mimic magnetic behaviour on the rotor of IPM machine and further to calculate iron losses.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1421
Author(s):  
Michał Szulborski ◽  
Sebastian Łapczyński ◽  
Łukasz Kolimas ◽  
Łukasz Kozarek ◽  
Desire Dauphin Rasolomampionona ◽  
...  

In this paper, a detailed three-dimensional, transient, finite element method of fuse link NH000 gG 100 A is proposed. The thermal properties during the operation of the fuses under nominal (100 A) and custom conditions (110 and 120 A) are the main focus of the analyses that were conducted. The work concerns both the outside elements of the fuse link (ceramic body) and the elements inside (current circuit). Both the distribution of the electric current and its impact on the temperature of the construction parts of the fuses during their operating mode have been described. Temperature distribution, power losses and energy dissipation were measured using a numerical model. In order to verify and validate the model, two independent teams of scientists executed experimental research, during which the temperature was measured on different parts of the device involving the rated current. Finally, the two sets of results were put together and compared with those obtained from the simulation tests. A possible significant correlation between the results of the empirical tests and the simulation work was highlighted.


Sign in / Sign up

Export Citation Format

Share Document