Effect of grain boundary ledge on the dislocation-free zone model of fracture: Transgranular microcrack nucleated from a grain boundary ledge

1996 ◽  
Vol 79 (8) ◽  
pp. 3975 ◽  
Author(s):  
Sham-Tsong Shiue
2016 ◽  
Vol 258 ◽  
pp. 93-96 ◽  
Author(s):  
Florian Schaefer ◽  
Matthias Thielen ◽  
Michael Marx ◽  
Christian Motz

Stage-I-fatigue-cracks are used as highly localized dislocation sources with well-known Burger’s vectors to study the interaction between dislocations and grain boundaries. This interaction in the plastic zone is of particular interest to understand the fluctuating crack growth in the very short crack regime. In the case of a blocked slip band the dislocations pile up at the grain boundary causing a local stress concentration. The resulting local stress distribution is calculated based on measurements of the dislocation density distribution in the plastic zone. For this purpose the slip line profiles were measured by AFM, the dislocation density distribution was determined and the dislocation-free zone model of fracture (DFZ) was validated. With this it is possible to quantify the grain boundary resistance and to combine geometric and stress approach for grain boundary resistance against slip transfer.


2020 ◽  
Vol 10 (7) ◽  
pp. 1020-1031
Author(s):  
Zehua Yan ◽  
Yandong Yu ◽  
Yanchao Sang ◽  
Yiming Yao ◽  
Jiahao Qian

Magnesium alloy plates can be strengthened by rolling, however, it is easy to crack or even break when the reduction of Mg–RE alloys is too large. Herein, the strengthening mechanical of the Mg–9Gd–3Nd–1Sn–1Zn– 0.6Zr alloy under different treatment conditions were investigated after hot-rolling to 80% reduction in thickness (0.8 mm) by multi-step methods. Furthermore, the rolled alloy by aging strengthening are explored. The results show that the hot-rolled alloy with 80% reduction are basically composed of dynamically recrystallized grains with the size of about 60 m, improving the mechanical properties significantly. The precipitates within grains undergo SSSS→ β″ → β′ phase transformation with the aging treatment up to 200 °C. Fine β″ precipitates were found in the grains of the rolled alloy under aged time (2 h), while β″ precipitates changed into β′ phase when the aging time was extended to 32 h. The base phase which is perpendicular to phase was precipitated in the alloy in longer aging time (96 h). In addition, the thickness of precipitates and precipitation-free zone (PFZ) at the grain boundary gradually increased as the time went on. Meanwhile, the discontinuous equilibrium phases at the grain boundary are gradually become continuous. The ultimate tensile strength and hardness were reached to 431.14 MPa, 105.9 HV at peak-aging, in addition, the elongation is reached to 3.11%, respectively. The formation of crack sources is due to the stress concentration between the brittle PFZ and the magnesium matrix, which leads to the decrease of ductility.


1969 ◽  
Vol 17 (11) ◽  
pp. 1363-1377 ◽  
Author(s):  
P.N.T Unwin ◽  
G.W Lorimer ◽  
R.B Nicholson

1993 ◽  
Vol 8 (8) ◽  
pp. 1853-1857 ◽  
Author(s):  
Sham-Tsong Shiue ◽  
Tong-Yi Zhang ◽  
Sanboh Lee

Based on the results of Shiue and Lee [J. Appl. Phys. 70, 2947 (1991)], the effect of plastic zone and grain boundary on the dislocation emission criterion was investigated. The emission criterion is based on the concept of spontaneous emission. The critical stress intensity factor for dislocation emission increases with the increasing size of dislocation-free zone and the number of piled-up dislocations in the plastic zone, but decreases with increasing grain size. The ductile versus brittle behavior of material was determined by the competition of critical stress intensity factors for dislocation emission and crack propagation. A material with larger grain size is easier to emit dislocation and allows more dislocations to be piled up, so that it behaves more ductile.


1998 ◽  
Vol 538 ◽  
Author(s):  
N. Sakaguchi ◽  
S. Watanabe ◽  
H. Takahashi

AbstractWe have investigated the solute segregation and simultaneous evolution of extended defects in an Fe-Cr-Ni alloy during irradiation by computer simulation. It sheds a light on the accomplishment of performing “the combined total calculation” or “the muliscale modeling” which deals with both radiation-induced segregation and various kinds of internal sink evolution. The formation of dislocation-free zone (DLFZ) was predicted in the vicinity of a grain boundary. It indicated that DLFZ formation is controlled by solute diffusional process via point defects diffusion near the grain boundary and the activation energy obtained by the width of DLFZ corresponds to the half of the value of the radiation-enhanced solute diffusivity.


Sign in / Sign up

Export Citation Format

Share Document