Dislocation emission criterion: Grain boundary effect

1993 ◽  
Vol 8 (8) ◽  
pp. 1853-1857 ◽  
Author(s):  
Sham-Tsong Shiue ◽  
Tong-Yi Zhang ◽  
Sanboh Lee

Based on the results of Shiue and Lee [J. Appl. Phys. 70, 2947 (1991)], the effect of plastic zone and grain boundary on the dislocation emission criterion was investigated. The emission criterion is based on the concept of spontaneous emission. The critical stress intensity factor for dislocation emission increases with the increasing size of dislocation-free zone and the number of piled-up dislocations in the plastic zone, but decreases with increasing grain size. The ductile versus brittle behavior of material was determined by the competition of critical stress intensity factors for dislocation emission and crack propagation. A material with larger grain size is easier to emit dislocation and allows more dislocations to be piled up, so that it behaves more ductile.

2000 ◽  
Vol 649 ◽  
Author(s):  
H.W. Ngan ◽  
Y.L. Chiu

ABSTRACTBy analysing the relevant results in the literature, we have found that, when indentation is made on a subgranular level, the hardness varies roughly inversely with the square root of the distance between the indent and the grain boundary. This effect is analogous to the Hall-Petch effect for macroscopic deformation.


2014 ◽  
Vol 936 ◽  
pp. 400-408 ◽  
Author(s):  
Ying Guang Liu ◽  
Xiao Dong Mi ◽  
Song Feng Tian

To research the effect of grain size on the fracture toughness of bimodal nanocrystalline (BNC) materials which are composed of nanocrystalline (NC) matrix and coarse grains, we have developed a theoretical model to study the critical stress intensity factor (which characterizes toughness) of BNC materials by considering a typical case where crack lies at the interface of two neighboring NC grains and the crack tip intersect at the grain boundary of the coarse grain, the cohesive zone size is assumed to be equal to the grain sizedof the NC matrix. Blunting and propagating processes of the crack is controlled by a combined effect of dislocation and cohesive zone. Edge dislocations emit from the cohesive crack tip and make a shielding effect on the crack. It was found that the critical stress intensity factor increases with the increasing of grain sizedof the NC matrix as well as the coarse grain sizeD. Moreover, the fracture toughness is relatively more sensitive to the coarse grain size rather than that of NC matrix.


2013 ◽  
Vol 364 ◽  
pp. 754-759 ◽  
Author(s):  
Jian Qiu Zhou ◽  
Lu Wang ◽  
Zhi Xiong Ye

A theoretical model to describe the nanovoid growth by emission dislocation shear loop in nanocrystalline metal under equal biaxial remote stress was developed. The critical stress for emission of dislocation was derived by considering the effects of surface stress. Within our description, dislocations emitted from surface of nanovoid were piled up at grain boundaries and the stress field generated by arrested dislocations can prevent further dislocation emission. The effect of grain boundary of nanocrystalline materials on nanovoid growth was investigated, and the results showed that the smaller of the grain size, the harder for the nanovoid growth.


1985 ◽  
Vol 107 (4) ◽  
pp. 277-281 ◽  
Author(s):  
Rui-Huan Zhao ◽  
J. C. M. Li

The emission of dislocations from a propagating crack in the mode II or III situations is studied by computer simulation. While the crack is moving the steady state number of dislocations is smaller than the saturation number which could be emitted from a stationary crack and such a steady state number decreases with increasing crack velocity. The effect on the emission process of the applied stress, the lattice friction for dislocation motion and the critical stress intensity factor for dislocation emission is studied. The results include also the plastic zone size, the dislocation distribution, the dislocation-free zone, and the instantaneous crack velocity. The average crack velocity does not depend on the applied stress but depends only on the critical stress intensity factor for dislocation emission. When such a factor is zero as assumed in some theories, the crack does not move at all.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 319
Author(s):  
Grzegorz Ludwik Golewski ◽  
Damian Marek Gil

This paper presents the results of the fracture toughness of concretes containing two mineral additives. During the tests, the method of loading the specimens according to Mode I fracture was used. The research included an evaluation of mechanical parameters of concrete containing noncondensed silica fume (SF) in an amount of 10% and siliceous fly ash (FA) in the following amounts: 0%, 10% and 20%. The experiments were carried out on mature specimens, i.e., after 28 days of curing and specimens at an early age, i.e., after 3 and 7 days of curing. In the course of experiments, the effect of adding SF to the value of the critical stress intensity factor—KIcS in FA concretes in different periods of curing were evaluated. In addition, the basic strength parameters of concrete composites, i.e., compressive strength—fcm and splitting tensile strength—fctm, were measured. A novelty in the presented research is the evaluation of the fracture toughness of concretes with two mineral additives, assessed at an early age. During the tests, the structures of all composites and the nature of macroscopic crack propagation were also assessed. A modern and useful digital image correlation (DIC) technique was used to assess macroscopic cracks. Based on the conducted research, it was found the application of SF to FA concretes contributes to a significant increase in the fracture toughness of these materials at an early age. Moreover, on the basis of the obtained test results, it was found that the values of the critical stress intensity factor of analyzed concretes were convergent qualitatively with their strength parameters. It also has been demonstrated that in the first 28 days of concrete curing, the preferred solution is to replace cement with SF in the amount of 10% or to use a cement binder substitution with a combination of additives in proportions 10% SF + 10% FA. On the other hand, the composition of mineral additives in proportions 10% SF + 20% FA has a negative effect on the fracture mechanics parameters of concretes at an early age. Based on the analysis of the results of microstructural tests and the evaluation of the propagation of macroscopic cracks, it was established that along with the substitution of the cement binder with the combination of mineral additives, the composition of the cement matrix in these composites changes, which implies a different, i.e., quasi-plastic, behavior in the process of damage and destruction of the material.


2021 ◽  
Vol 2021 (3) ◽  
pp. 77-85
Author(s):  
K. M. Borysovska ◽  
◽  
N. M. Marchenko ◽  
Yu. M. Podrezov ◽  
S. O. Firstov ◽  
...  

The (DD) method was used to model the formation of the plastic zone of the top of the cracks in polycrystalline molybdenum. Special attention was paid to take into account the interaction of dislocations in the plastic zone with grain boundaries. Structural sensitivity of fracture toughness was analyzed under brittle-ductile condition. Simulations were performed for a range of grain sizes from 400 to 100 μm, at which a sudden increase in fracture toughness with a decrease of grain size was experimentally shown. We calculated the value of K1c taking into account the shielding action of dislocations. The position of all dislocations in the plastic zone at fracture moment was calculated. Based on these data, we obtained the dependences of dislocation density on the distance from the crack tip thereby confirming significant influence of the grain boundaries on plastic zone formation. At large grain sizes, when the plastic zone does not touch the boundary, the distribution of dislocations remained unchanged. As grains reduce their size to size of the plastic zone, they start formating a dislocation pile – up near the boundaries. Dislocations on plastic zone move slightly toward the crack tip, but the density of dislocations in the middle of the grain remains unchanged, and fracture toughness remains almost unchanged. Further reduction of the grain size leads to the Frank-Reed source activation on the grain boundary Forming dislocation pile-up of the neighbor grains. Its stress concentration acts on dislocations of the first grain and causes redistribution of plastic zone dislocations. If the reduction in grain size is not enough to form a strong pile-up, density of dislocations on plastic zone increases slightly and crack resistance increases a few percent. Further reduction of grains promotes strong pile-up, dislocations move to crack tip, and its density on plastic zone increases. Crack is shielded and fracture toughness increases sharply. The calculation showed that the fracture toughness jump is observed at grain sizes of 100—150 μm, in good agreement with the experiment. Keywords: dislocation dynamics simulation, molybdenum, fracture toughness, grain size, plastic zone, brittle-ductile transition.


Sign in / Sign up

Export Citation Format

Share Document