Deposition‐rate reduction through improper substrate‐to‐electrode attachment in very‐high‐frequency deposition ofa‐Si:H

1996 ◽  
Vol 80 (6) ◽  
pp. 3546-3551 ◽  
Author(s):  
H. Meiling ◽  
W. G. J. H. M. van Sark ◽  
J. Bezemer ◽  
W. F. van der Weg
1994 ◽  
Vol 358 ◽  
Author(s):  
P. Hapke ◽  
F. Finger ◽  
M. Luysberg ◽  
R. Carius ◽  
H. Wagner

ABSTRACTThe growth mechanism and material properties of -type µc-Si:H prepared with plasma enhanced chemical vapour deposition in the very high frequency range is investigated. By increasing the plasma excitation frequency the grain size, deposition rate and Hall mobility can be simultaneously increased without having to adjust other deposition parameters in particular the temperature. This effect is explained by an enhanced selective etching of amorphous tissue and grain boundary regions together with a sufficient supply of growth species at high frequency plasmas.


Optik ◽  
2019 ◽  
Vol 180 ◽  
pp. 104-112 ◽  
Author(s):  
Xinli Li ◽  
Ruimin Jin ◽  
Lihua Li ◽  
Jingxiao Lu ◽  
Yongjun Gu ◽  
...  

1999 ◽  
Vol 557 ◽  
Author(s):  
S.J. Jones ◽  
X. Deng ◽  
T. Liu ◽  
M. Izu

AbstractIn an effort to find an alternative deposition method to the standard low deposition rate 13.56 M-z PECVD technique, the feasibility of using a 70 MiHz rf plasma frequency to prepare a-Si:H based i-layer materials at high rates for nip based triple-junction solar cells has been tested. As a prelude to multi-junction cell fabrication, the deposition conditions used to make single-junction a-Si:H and a-SiGe:H cells using this Very High Frequency (VHF) method have been varied to optimize the material quality and the cell efficiencies. It was found that the efficiencies and the light stability for both a-Si:H and a-SiGe:H single-junction cells remain relatively constant as the i-layer deposition rate is varied from 1 to 10 Å/s. Also these stable efficiencies are similar to those for cells made at low deposition rates (1 Å/s) using the standard 13.56 MHz PECVD technique and the same deposition equipment. Using the knowledge obtained in the fabrication of the single-junction devices, a-Si:H/a-SiGe:H/a-SiGe:H triple-junction solar cells have been fabricated with all of the i-layers prepared using the VHF technique and deposition rates near 10 Å/s. Thin doped layers for these devices were prepared using the standard 13.56 MIHz rf frequency and deposition rates near 1 Å/s. Pre-light soaked efficiencies of greater than 10% have been obtained for these cells prepared at the high rates. In addition, after 600 hrs. of light soaking under white light conditions, the cell efficiencies degraded by only 10-13%, values similar to the degree of degradation for high efficiency triple-junction cells made by the standard 13.56 MiHz method using i-layer deposition rates near 1 Å/s. Thus, use of this VHF method in the production of large area a-Si:H based multi-junction solar modules will allow for higher i-layer deposition rates, higher module throughput and reduced module cost.


1998 ◽  
Vol 507 ◽  
Author(s):  
S.J. Jones ◽  
X. Deng ◽  
T. Liu ◽  
M. Izu

ABSTRACTThe 70 MHz Plasma Enhance Chemical Vapor Deposition (PECVD) technique has been tested as a high deposition rate (10 A/s) process for the fabrication of a-Si:H and a-SiGe:H alloy ilayers for high efficiency nip solar cells. As a prelude to multi-junction cell fabrication, the deposition conditions used to make single-junction a-Si:H and a-SiGe:H cells using this Very High Frequency (VHF) method have been varied to optimize the material quality and the cell efficiencies. It was found that the efficiencies and the light stability for a-Si:H single-junction cells can be made to remain relatively constant as the i-layer deposition rate is varied from 1 to 10 Å/s. Also these stable efficiencies are similar to those for cells made at low deposition rates (1 Å/s) using the standard 13.56 MHz PECVD technique. For the a-SiGe:H cells of the same i-layer thickness, use of the VHF technique leads to cells with higher currents and an ability to more easily current match triple-junction cells prepared at high deposition rates which should lead to higher multi-junction efficiencies. Thus, use of this VHF method in the production of large area a- Si:H based multi-junction solar modules will allow for higher i-layer deposition rates, higher manufacturing throughput and reduced module cost.


1994 ◽  
Vol 65 (20) ◽  
pp. 2588-2590 ◽  
Author(s):  
F. Finger ◽  
P. Hapke ◽  
M. Luysberg ◽  
R. Carius ◽  
H. Wagner ◽  
...  

1977 ◽  
Author(s):  
D. V. Campbell ◽  
William Kennebeck ◽  
A. Zanella ◽  
Paul Sexton

2021 ◽  
pp. 1-16
Author(s):  
Xu Hu ◽  
Bin Lin ◽  
Ping Wang ◽  
Hongguang Lyu ◽  
Tie-Shan Li

Abstract The very high frequency data exchange system (VDES) is promising in promoting electronic navigation (E-navigation) and improving navigation safety. The multiple access control (MAC) protocol is crucial to the transmission performance of VDES. The self-organising time division multiple access (SOTDMA) protocol, as the only access mode given by current recommendations, leads to a high rate of transmission collisions in the traditional automatic identification system (AIS), especially with heavy traffic loads. This paper proposes a novel feedback based time division multiple access (FBTDMA) protocol to address the problems caused by SOTDMA, such that collision of transmissions can be avoided in information transmission among vessels. Simulation results demonstrate that the proposed FBTDMA outperforms the traditional SOTDMA in terms of channel utilisation and throughput, and significantly reduces the transmission collision rate. The study is expected to provide insights into VDES standardisation and E-navigation modernisation.


Sign in / Sign up

Export Citation Format

Share Document