Variational solution of the three-dimensional Schrödinger equation using plane waves in adaptive coordinates

2011 ◽  
Vol 135 (20) ◽  
pp. 204104 ◽  
Author(s):  
José M. Pérez-Jordá
2021 ◽  
pp. 2150441
Author(s):  
Mostafa M. A. Khater

This paper examines three different recent computational schemes (extended simplest equation (ESE) method, modified Kudryashov (MKud) method, and modified Khater (MKha) method) for obtaining novel solitary wave solutions of cubic–quintic nonlinear Helmholtz (CQ–NLH) model. This model is considered as a general model of the well-known Schrödinger equation where it takes into account the effects of backward scattering that are neglected in the more common nonlinear Schrödinger model. Many distinct wave solutions are explained in the different formulas, such as trigonometric, rational, and hyperbolic formulas. These solutions are described in some precise sketches in two- and three-dimensional. The methods’ performance is explained to demonstrate their effectiveness and power.


2022 ◽  
Author(s):  
Arezoo Firoozi ◽  
Ahmad Mohammadi ◽  
Reza Khordad ◽  
Tahmineh Jalali

Abstract An efficient method inspired by the traditional body of revolution finite-difference time-domain (BOR-FDTD) method is developed to solve the Schrodinger equation for rotationally symmetric problems. As test cases, spherical, cylindrical, cone-like quantum dots, harmonic oscillator, and spherical quantum dot with hydrogenic impurity are investigated to check the efficiency of the proposed method which we coin as Quantum BOR-FDTD (Q-BOR-FDTD) method. The obtained results are analysed and compared to the 3-D FDTD method, and the analytical solutions. Q-BOR-FDTD method proves to be very accurate and time and memory efficient by reducing a three-dimensional problem to a two-dimensional one, therefore one can employ very fine meshes to get very precise results. Moreover, it can be exploited to solve problems including hydrogenic impurities which is not an easy task in the traditional FDTD calculation due to singularity problem. To demonstrate its accuracy, we consider spherical and cone-like core-shell QD with hydrogenic impurity. Comparison with analytical solutions confirms that Q-BOR–FDTD method is very efficient and accurate for solving Schrodinger equation for problems with hydrogenic impurity


1994 ◽  
Vol 09 (18) ◽  
pp. 3143-3151 ◽  
Author(s):  
R.F. RIBEIRO ◽  
E.R. BEZERRA DE MELLO

In this paper a nonrelativistic fermion-fermion effective potential for a three-dimensional massive Thirring model is obtained in a 1/N expansion. We show, by analyzing the Schrödinger equation in the presence of this potential, that the system presents a fermion-fermion bound state for a positive value of the coupling constant g.


Author(s):  
A. Chatziafratis ◽  
G. Fikioris ◽  
J. P. Xanthakis

The progress in field emission theory from its initial Fowler–Nordheim form is centred on the transmission coefficient. For the supply (of electrons) function one still uses the constant value due to a supply of plane-waves states. However, for emitting tips of apex radius of 1–5 nm this is highly questionable. To address this issue, we have solved the Schrödinger equation in a sharp paraboloidally shaped quantum box. The Schrödinger equation is separable in the rotationally parabolic coordinate system and we hence obtain the exact eigenstates of the system. Significant differences from the usual Cartesian geometry are obtained. (1) Both the normally incident and parallel electron fluxes are functions of the angle to the emitter axis and affect the emission angle. (2) The WKB approximation fails for this system. (3) The eigenfunctions of the nanoemitter form a continuum only in one dimension while complete discretization occurs in the other two directions. (4) The parallel electron velocity vanishes at the apex which may explain the recent spot-size measurements in near-field scanning electron microscopy. (5) Competing effects are found as the tip radius decreases to 1 nm: The electric field increases but the total supply function decreases so that possibly an optimum radius exists.


Sign in / Sign up

Export Citation Format

Share Document