High performance Sm2+δ Fe15Ga2C2 permanent magnets made by melt spinning and hot pressing

1998 ◽  
Vol 83 (10) ◽  
pp. 5549-5551 ◽  
Author(s):  
J. van Lier ◽  
M. Kubis ◽  
W. Grünberger ◽  
L. Schultz ◽  
H. Kronmüller

Author(s):  
A. Zaluska ◽  
L.X. Liao ◽  
X. Chen ◽  
Z. Altounian ◽  
J.O. Ström-Olsen

Nd-Fe alloys are important for high performance permanent magnets (usually in combination with B, C or N) and a knowledge of the metastable and stable phases of the system is necessary for the development of these new materials. An effective way to investigate such phases is by crystallizing an amorphous precursor.Amorphous ribbons of the binary alloy Nd33Fe77 were produced by melt-spinning. The phase transformations induced by heat treatment of the as-quenched ribbons is complex involving first the production of metastable phases followed by subsequent transformation into stable phases and finally eutectic melting.



Author(s):  
Tsung-Yao Chu

High-performance permanent magnets based on the Nd-Fe-B ternary system can be prepared by melt-spinning of the molten alloy and subsequent pressing to full density at elevated temperature. The starting composition is always slightly rich in Nd compared to stoichiometric Nd2Fe14B in order to ensure the formation of the Nd-rich grain boundary phase. The excess Nd additions also serve to keep elemental Fe particles from precipitating but, instead, lead to unexpected precipitation within the Nd2Fe14B grains. The current research seeks to fully characterize the structure of the precipitates.Electron transparent specimens for TEM examination were prepared by mechanical grinding of thin sections cut from the hot pressed Nd0.135Fe0.815B0.05 magnets, followed by argon ion beam milling at 6 kV. Most of the samples were studied in a JEOL 1200EX STEM equipped with EDS, operating at 120 kV. A few samples were examined at higher resolution in a JEOL 200 CX TEM operated at 200 kV, employing a side entry goniometer stage and a LaB6 cathode.



1996 ◽  
Vol 29 (1) ◽  
pp. 271-273 ◽  
Author(s):  
L Cao ◽  
K-H Müller ◽  
A Handstein ◽  
W Grünberger ◽  
V Neu ◽  
...  


Author(s):  
Raja K. Mishra

The discovery of a new class of permanent magnets based on Nd2Fe14B phase in the last decade has led to intense research and development efforts aimed at commercial exploitation of the new alloy. The material can be prepared either by rapid solidification or by powder metallurgy techniques and the resulting microstructures are very different. This paper details the microstructure of Nd-Fe-B magnets produced by melt-spinning.In melt spinning, quench rate can be varied easily by changing the rate of rotation of the quench wheel. There is an optimum quench rate when the material shows maximum magnetic hardening. For faster or slower quench rates, both coercivity and maximum energy product of the material fall off. These results can be directly related to the changes in the microstructure of the melt-spun ribbon as a function of quench rate. Figure 1 shows the microstructure of (a) an overquenched and (b) an optimally quenched ribbon. In Fig. 1(a), the material is nearly amorphous, with small nuclei of Nd2Fe14B grains visible and in Fig. 1(b) the microstructure consists of equiaxed Nd2Fe14B grains surrounded by a thin noncrystalline Nd-rich phase. Fig. 1(c) shows an annular dark field image of the intergranular phase. Nd enrichment in this phase is shown in the EDX spectra in Fig. 2.



Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1034
Author(s):  
Ching-Chien Huang ◽  
Chin-Chieh Mo ◽  
Guan-Ming Chen ◽  
Hsiao-Hsuan Hsu ◽  
Guo-Jiun Shu

In this work, an experiment was carried out to investigate the preparation condition of anisotropic, Fe-deficient, M-type Sr ferrite with optimum magnetic and physical properties by changing experimental parameters, such as the La substitution amount and little additive modification during fine milling process. The compositions of the calcined ferrites were chosen according to the stoichiometry LaxSr1-xFe12-2xO19, where M-type single-phase calcined powder was synthesized with a composition of x = 0.30. The effect of CaCO3, SiO2, and Co3O4 inter-additives on the Sr ferrite was also discussed in order to obtain low-temperature sintered magnets. The magnetic properties of Br = 4608 Gauss, bHc = 3650 Oe, iHc = 3765 Oe, and (BH)max = 5.23 MGOe were obtained for Sr ferrite hard magnets with low cobalt content at 1.7 wt%, which will eventually be used as high-end permanent magnets for the high-efficiency motor application in automobiles with Br > 4600 ± 50 G and iHc > 3600 ± 50 Oe.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-Yun Tian ◽  
Oliver Gutfleisch ◽  
Olle Eriksson ◽  
Levente Vitos

AbstractTetragonal ($${\hbox{L1}}_{0}$$ L1 0 ) FeNi is a promising material for high-performance rare-earth-free permanent magnets. Pure tetragonal FeNi is very difficult to synthesize due to its low chemical order–disorder transition temperature ($$\approx {593}$$ ≈ 593  K), and thus one must consider alternative non-equilibrium processing routes and alloy design strategies that make the formation of tetragonal FeNi feasible. In this paper, we investigate by density functional theory as implemented in the exact muffin-tin orbitals method whether alloying FeNi with a suitable element can have a positive impact on the phase formation and ordering properties while largely maintaining its attractive intrinsic magnetic properties. We find that small amount of non-magnetic (Al and Ti) or magnetic (Cr and Co) elements increase the order–disorder transition temperature. Adding Mo to the Co-doped system further enhances the ordering temperature while the Curie temperature is decreased only by a few degrees. Our results show that alloying is a viable route to stabilizing the ordered tetragonal phase of FeNi.



2021 ◽  
Vol 11 (5) ◽  
pp. 2150
Author(s):  
Claudio Rossi ◽  
Alessio Pilati ◽  
Marco Bertoldi

This paper deals with the digital implementation of a motor control algorithm based on a unified machine model, thus usable with every traditional electric machine type (induction, brushless with interior permanent magnets, surface permanent magnets or pure reluctance). Starting from the machine equations in matrix form in continuous time, the paper exposes their discrete time transformation, suitable for digital implementation. Since the solution of these equations requires integration, the virtual division of the calculation time in sub-intervals is proposed to make the calculations more accurate. Optimization of this solver enables faster runs and higher precision especially when high rotating speed requires fast calculation time. The proposed solver is presented at different implementation levels, and its speed and accuracy performance are compared with standard solvers.



2013 ◽  
Vol 20 (6) ◽  
Author(s):  
Yue Zhang ◽  
Haifeng Li ◽  
Xinda Li ◽  
Magdi E. Gibril ◽  
Keqing Han ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document