Diffusional distortion of the free‐energy gap law

1995 ◽  
Vol 103 (18) ◽  
pp. 7927-7933 ◽  
Author(s):  
A. I. Burshtein
1996 ◽  
Vol 100 (8) ◽  
pp. 3005-3015 ◽  
Author(s):  
A. I. Burshtein ◽  
E. Krissinel

2010 ◽  
Vol 114 (50) ◽  
pp. 12998-13004 ◽  
Author(s):  
Vladislav V. Yudanov ◽  
Valentina A. Mikhailova ◽  
Anatoly I. Ivanov

2007 ◽  
Vol 9 (3) ◽  
pp. 396-400 ◽  
Author(s):  
Anatoly I. Burshtein ◽  
Anatoly I. Ivanov

2018 ◽  
Vol 17 (5) ◽  
pp. 607-616 ◽  
Author(s):  
Valentina A. Mikhailova ◽  
Roman E. Malykhin ◽  
Anatoly I. Ivanov

Ultrafast low exergonic charge recombination following photoinduced charge separation proceeds in a non-equilibrium mode and its rate constant is nearly independent of the free energy gap.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Dongzheng Yang ◽  
Jing Huang ◽  
Xixi Hu ◽  
Hua Guo ◽  
Daiqian Xie

Abstract Inelastic collisions involving molecular species are key to energy transfer in gaseous environments. They are commonly governed by an energy gap law, which dictates that transitions are dominated by those between initial and final states with roughly the same ro-vibrational energy. Transitions involving rotational inelasticity are often further constrained by the rotational angular momentum. Here, we demonstrate using full-dimensional quantum scattering on an ab initio based global potential energy surface (PES) that HF–HF inelastic collisions do not obey the energy and angular momentum gap laws. Detailed analyses attribute the failure of gap laws to the exceedingly strong intermolecular interaction. On the other hand, vibrational state-resolved rate coefficients are in good agreement with existing experimental results, validating the accuracy of the PES. These new and surprising results are expected to extend our understanding of energy transfer and provide a quantitative basis for numerical simulations of hydrogen fluoride chemical lasers.


2019 ◽  
Vol 26 (04) ◽  
pp. 1850172
Author(s):  
MUDAR AHMED ABDULSATTAR ◽  
ADEEBH L. RESNE ◽  
SHROK ABDULLAH ◽  
RIYADH J. MOHAMMED ◽  
NOON KADHUM ALARED ◽  
...  

Density functional theory combined with Gibbs free energy calculations is used to study the sensing behavior of tin dioxide (SnO[Formula: see text] clusters towards chlorine gas molecules. Studied SnO2 clusters’ results show the known property of tin dioxide being an oxygen-deficient semiconductor with the preferred stoichiometry SnO[Formula: see text]. The kind of reactions that result in sensing Cl2 molecules is investigated. These include oxygen replacement, chlorine molecule dissociation and van der Waals attachment. Oxygen replacement shows an increase in energy gap which is the case experimentally. Optimum sensing operating temperature towards Cl2 molecules that results from the intersection of the highest SnO2 adsorption and desorption Gibbs free energy lines is at 275∘C in agreement with the experimentally measured temperature of 260∘C.


IUCrJ ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 195-207
Author(s):  
Yanming Xia ◽  
Yuanfeng Wei ◽  
Hui Chen ◽  
Shuai Qian ◽  
Jianjun Zhang ◽  
...  

Recently, cocrystallization has been widely employed to tailor physicochemical properties of drugs in the pharmaceutical field. In this study, cocrystallization was applied to separate natural compounds with similar structures. Three flavonoids [baicalein (BAI), quercetin (QUE) and myricetin (MYR)] were used as model compounds. The coformer caffeine (CAF) could form cocrystals with all three flavonoids, namely BAI–CAF (cocrystal 1), QUE–CAF (cocrystal 2) and MYR–CAF (cocrystal 3). After adding CAF to methanol solution containing MYR and QUE (or QUE and BAI), cocrystal 3 (or cocrystal 2) preferentially formed rather than cocrystal 2 (or cocrystal 1), indicating that flavonoid separation could be achieved by competitive cocrystallization. After co-mixing the slurry of two flavonoids with CAF followed by centrifugation, the resolution ratio that could be achieved was 70–80% with purity >90%. Among the three cocrystals, cocrystal 3 showed the lowest formation constant with a negative Gibbs free energy of nucleation and the highest energy gap. Hirshfeld surface analysis and density of states analysis found that cocrystal 3 had the highest strong interaction contribution and the closest electronic density, respectively, followed by cocrystal 2 and cocrystal 1, suggesting CAF could competitively form a cocrystal with MYR much more easily than QUE and BAI. Cocrystallization is a promising approach for green and effective separation of natural products with similar chemical structures.


Sign in / Sign up

Export Citation Format

Share Document