Electron and hole deep levels related to Sb-mediated Ge quantum dots embedded in n-type Si, studied by deep level transient spectroscopy

2013 ◽  
Vol 102 (23) ◽  
pp. 232106 ◽  
Author(s):  
Victor-Tapio Rangel-Kuoppa ◽  
Alexander Tonkikh ◽  
Peter Werner ◽  
Wolfgang Jantsch
2009 ◽  
Vol 255 (6) ◽  
pp. 3548-3551 ◽  
Author(s):  
Zhensheng Tao ◽  
Ning Zhan ◽  
Hongbin Yang ◽  
Yan Ling ◽  
Zhenyang Zhong ◽  
...  

2001 ◽  
Vol 89 (2) ◽  
pp. 1172-1174 ◽  
Author(s):  
V. V. Ilchenko ◽  
S. D. Lin ◽  
C. P. Lee ◽  
O. V. Tretyak

2010 ◽  
Vol 645-648 ◽  
pp. 759-762
Author(s):  
Koutarou Kawahara ◽  
Giovanni Alfieri ◽  
Michael Krieger ◽  
Tsunenobu Kimoto

In this study, deep levels are investigated, which are introduced by reactive ion etching (RIE) of n-type/p-type 4H-SiC. The capacitance of as-etched p-type SiC is remarkably small due to compensation or deactivation of acceptors. These acceptors can be recovered to the initial concentration of the as-grown sample after annealing at 1000oC. However, various kinds of defects remain at a total density of ~5× 1014 cm-3 in a surface-near region from 0.3 μm to 1.0 μm even after annealing at 1000oC. The following defects are detected by Deep Level Transient Spectroscopy (DLTS): IN2 (EC – 0.35 eV), EN (EC – 1.6 eV), IP1 (EV + 0.35 eV), IP2 (HS1: EV + 0.39 eV), IP4 (HK0: EV + 0.72 eV), IP5 (EV + 0.75 eV), IP7 (EV + 1.3 eV), and EP (EV + 1.4 eV). These defects generated by RIE can be significantly reduced by thermal oxidation and subsequent annealing at 1400oC.


Sign in / Sign up

Export Citation Format

Share Document