High quality factor integrated gigahertz magnetic transformers with FeGaB/Al2O3 multilayer films for radio frequency integrated circuits applications

2014 ◽  
Vol 115 (17) ◽  
pp. 17E714 ◽  
Author(s):  
Y. Gao ◽  
S. Zare ◽  
X. Yang ◽  
T. X. Nan ◽  
Z. Y. Zhou ◽  
...  
2018 ◽  
Vol 8 (9) ◽  
pp. 1552 ◽  
Author(s):  
Youngsoo Kim ◽  
Young Lee ◽  
Seokhyeon Hong ◽  
Kihwan Moon ◽  
Soon-Hong Kwon

The development of an efficient silicon-based nanolight source is an important step for silicon-based photonic integrated circuits. We propose a high quality factor photonic crystal nanocavity consisting of silicon and silica, which can be used as a silicon-compatible nanolight source. We show that this cavity can effectively confine lights in a low-index silica layer with a high confinement factor of 0.25, in which rare-earth dopants can be embedded as gain materials. The cavity is optimized to have a high quality factor of 15,000 and a mode volume of 0.01 μm3, while the resonance has a wavelength of 1537 nm. We expect that the high confinement factor in the thin silica layer and the high quality factor of the proposed cavity enable the cavity to be a good candidate for silicon-compatible nanolight sources for use in nanolasers or light-emitting diodes in the telecommunication wavelength region.


2001 ◽  
Vol 19 (1) ◽  
pp. 105-109
Author(s):  
P.A. BAK ◽  
R. CALABRESE ◽  
YU.D. CHERNOUSOV ◽  
V. GUIDI ◽  
L. GUIDI ◽  
...  

Usage of a cavity with a high quality factor in a streak camera (SC) allows us to increase the energy of electrons up to 100 keV and therefore to reduce the influence of some of the effects that limit the SC time resolution. Time resolution up to 1.4 ps on a prototype of a radio-frequency-based SC (RFC) with circular scanning was demonstrated earlier. Following this, the new RFC was produced. The possibility of achieving a time resolution of 0.6 ps for a 350-ps single light signal is demonstrated. Preparation for experiments with spiral scanning (sub-ps time resolution for 10-ns process duration) is in progress.


Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sunil Kumar Tumma ◽  
Bheema Rao Nistala

Purpose The purpose of this study is to develop a high-quality factor fractal inductor for wireless applications such as satellite, WLAN, Bluetooth, microwave, radar and cellular phone. Design/methodology/approach The Hilbert fractal curve is used in the implementation of the proposed inductor. In the proposed inductor, the metal width has split into multiple paths based on the skin depth of the metal. The simulations of the proposed inductor are performed in 180 nm CMOS technology using the Advanced Design System EM simulator. Findings The multipath technique reduces the skin effects and proximity effects, which, in turn, decreases the series resistance of the inductor and attains high-quality factor over conventional fractal inductor for the equal on-chip area. Research limitations/implications The width of the path has chosen higher than the skin depth of the metal for a required operating frequency. Due to cost constraints, the manufacturing of the proposed fractal inductor is limited to a single layer. Practical implications The proposed inductor will be useful for the implementation of critical building blocks of radio frequency integrated circuits and monolithic microwave integrated circuits such as low-noise amplifiers, voltage-controlled oscillators, mixers, filters and power amplifiers. Originality/value This paper presents for the first time the use of a multipath technique for the fractal inductors to enhance the quality factor.


2014 ◽  
Vol 134 (2) ◽  
pp. 26-31 ◽  
Author(s):  
Nguyen Van Toan ◽  
Masaya Toda ◽  
Yusuke Kawai ◽  
Takahito Ono

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Andreas Ø. Svela ◽  
Jonathan M. Silver ◽  
Leonardo Del Bino ◽  
Shuangyou Zhang ◽  
Michael T. M. Woodley ◽  
...  

AbstractAs light propagates along a waveguide, a fraction of the field can be reflected by Rayleigh scatterers. In high-quality-factor whispering-gallery-mode microresonators, this intrinsic backscattering is primarily caused by either surface or bulk material imperfections. For several types of microresonator-based experiments and applications, minimal backscattering in the cavity is of critical importance, and thus, the ability to suppress backscattering is essential. We demonstrate that the introduction of an additional scatterer into the near field of a high-quality-factor microresonator can coherently suppress the amount of backscattering in the microresonator by more than 30 dB. The method relies on controlling the scatterer position such that the intrinsic and scatterer-induced backpropagating fields destructively interfere. This technique is useful in microresonator applications where backscattering is currently limiting the performance of devices, such as ring-laser gyroscopes and dual frequency combs, which both suffer from injection locking. Moreover, these findings are of interest for integrated photonic circuits in which back reflections could negatively impact the stability of laser sources or other components.


Sign in / Sign up

Export Citation Format

Share Document