Numerical approach of the injection molding process of fiber-reinforced composite with considering fiber orientation

Author(s):  
T. B. Nguyen Thi ◽  
A. Yokoyama ◽  
K. Ota ◽  
K. Kodama ◽  
K. Yamashita ◽  
...  
2018 ◽  
Vol 37 (15) ◽  
pp. 1020-1034 ◽  
Author(s):  
Christoph Lohr ◽  
Björn Beck ◽  
Frank Henning ◽  
Kay André Weidenmann ◽  
Peter Elsner

The MuCell process is a special injection molding process which utilizes supercritical gas (nitrogen) to create integral foam sandwiches. The advantages are lower weight, higher specific properties and shorter cycle times. In this study, a series of glass fiber-reinforced polyphenylene sulfide foam blanks are manufactured using the MuCell injection molding process. The different variations of the process (low-pressure also known as structural foam injection molding) and high-pressure foam injection molding (also known as “core back expansion,” “breathing mold,” “precision opening,” decompression molding) are used. The sandwich structure and mechanical properties (tensile strength, bending strength, and impact behavior) of the microcellular and glass fiber-reinforced polyphenylene sulfide foams are systematically investigated and compared to compact material. The results showed that the injection parameters (injection speed, foaming mechanism) played an important role in the relative density of microcellular polyphenylene sulfide foams and the mechanical properties. It could be shown that the specific tensile strength decreased while increasing the degree of foaming which can be explained by the increased number of cells and the resulting cell size. This leads to stress peaks which lower the mechanical properties. The Charpy impact strength shows a significant dependence on the fiber orientation. The specific bending modulus of the high-pressure foaming process, however, surpasses the values of the other two processes showing the potential of this manufacturing variation especially with regard to bending loads. Furthermore, a high dependence of the mechanical properties on the fiber orientation of the tested specimens can be found.


2011 ◽  
Vol 418-420 ◽  
pp. 1194-1201
Author(s):  
He Sheng Liu ◽  
Ai Hua Xiong ◽  
Xing Yuan Huang ◽  
Jia Mei Lai

Based on generalized non-Newtonian fluid with seven parameters Cross-WLF viscosity model and modified 2-double Tait model, the numerical simulation was carried out for the short glass fiber reinforced PP injection molding process of rectangular part. The influence of main process parameters on fiber orientation is investigated. The results show that fiber orientation can be generally divided into three-regional layers in injection molding, that is outer-surface, subsurface and core layer. The degree of fiber orientation in subsurface layer is the highest and that in core layer is the lowest. The influence of fibers interaction coefficient (Ci) and fibers aspect ratio (re) on fiber orientation is significant. There is obvious difference between simulation results and practical results without consideration of Ci. The effect of melt temperature, mold temperature and cooling tubes number on fiber orientation isn’t obvious.


Author(s):  
Antony Paul ◽  
Jeffery M. Gallagher ◽  
Raymond J. Cipra ◽  
Thomas Siegmund

Fiber reinforced composite materials are now frequently being used over conventional materials for their ability to achieve tailored properties and performance characteristics. With the recent advancements in manufacturing techniques, short-fiber composites are coming into prominence in this sector, with their cost advantage and their capability for large throughput. Randomness of fiber orientation is inherent to short fiber composite manufacturing processes. In order to effectively manipulate the mechanical properties of a short-fiber reinforced composite, it is imperative to adequately control the orientation of the fibers during the deposition stage. A process is currently developed to acquire geometrical data of the target object and to utilize it to create a short-fiber reinforced component with controlled fiber orientation. The topological data acquisition of the object is made possible using non-contact 3D imaging techniques. The geometric data is then transferred to a commercial CAD package for the added capability to manipulate the geometry as may be required for specific applications. Subsequently, geometric data constitutes the basis of path planning for the tooling processes. In our process, a novel rapidly re-configurable tooling and molding technology is employed by which a 6-axis robotic arm is used to sculpt a pin-device vacuum surface. After the tooling is completed, the robotic arm will use a deposition nozzle to orient a steady stream of initially random short-fiber from a feeder into a unidirectional output, onto the tool surface. By controlling the position and orientation of the deposition nozzle, it is possible to control the orientation and density of fiber in each section of the near-net shaped composite pre-form. The fiber pre-form is then impregnated with a suitable matrix medium and cured to create the required component. The outlined process is thus capable of manufacturing a near-net shaped short-fiber reinforced component with highly specific mechanical properties. One of the many applications envisaged using this process is the manufacture of custom form-fitting braces, masks and guards for use in healthcare products. A patient intervention can have his or her features acquired using stereo-imaging and have corrective measures incorporated into the device prior to manufacturing. By controlling the orientation and density of the fiber at different portions of the device, it is possible to provide adequate support at specific areas or to restrict movement in specific directions while providing compliance to movement in the others.


Sign in / Sign up

Export Citation Format

Share Document