Real time characterization of polymer surface modifications by an atmospheric-pressure plasma jet: Electrically coupled versus remote mode

2014 ◽  
Vol 105 (17) ◽  
pp. 171601 ◽  
Author(s):  
A. J. Knoll ◽  
P. Luan ◽  
E. A. J. Bartis ◽  
C. Hart ◽  
Y. Raitses ◽  
...  
2015 ◽  
Vol 43 (3) ◽  
pp. 713-725 ◽  
Author(s):  
Marco Boselli ◽  
Vittorio Colombo ◽  
Matteo Gherardi ◽  
Romolo Laurita ◽  
Anna Liguori ◽  
...  

Author(s):  
RB Tyata ◽  
DP Subedi ◽  
A Shrestha ◽  
D Baral

In this paper, an atmospheric pressure plasma jet (APPJ) in air that is expected to be useful for polymer surface modification has been reported. The plasma jet was produced by applying (10 - 30) kHz, (0 - 20) kV AC source. The electrical and optical measurements have also been reported. The use of solenoid as an external electrode has been found to be more effective in boosting the jet to a distance up to 30 mm even with a small flow rate of air. The characteristic of the proposed APPJ was investigated by measuring the effect of treatment on a PE film on the jet for different exposition time and distance from the nozzle. It has been confirmed that the jet can modify polymer film with a work distance of over 25mm. This plasma jet can be useful for the treatment and cleaning of objects having large structures and could be used in wider areas of application. DOI: http://dx.doi.org/10.3126/kuset.v8i1.6035 KUSET 2012; 8(1): 15-22


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Hom Bahadur Baniya ◽  
Rajendra Shrestha ◽  
Rajesh Prakash Guragain ◽  
Mohan Bahadur Kshetri ◽  
Bishnu Prasad Pandey ◽  
...  

An atmospheric-pressure plasma jet (APPJ) has a lot of applications in recent years such as in material processing, surface modification, biomedical material processing, and thin film deposition. APPJ has been generated by a high-voltage power supply (0-20 kV) at an operating frequency of 27 kHz. This paper reports the generation and characterization of APPJ in argon environment and its application in the surface modification of polyethylene terephthalate (PET). The plasma jet has been characterized by electrical and optical methods. In order to characterize the plasma jet, electron density and electron temperature have been determined. The surface roughness of the untreated and plasma-treated PET samples was characterized by contact angle measurement, surface energy analysis, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM).


Sign in / Sign up

Export Citation Format

Share Document