small flow
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 41)

H-INDEX

19
(FIVE YEARS 1)

2022 ◽  
Vol 10 (1) ◽  
pp. 115
Author(s):  
Wei Li ◽  
Mingjiang Liu ◽  
Leilei Ji ◽  
Yulu Wang ◽  
Muhammad Awais ◽  
...  

This paper presents the matching characteristics of impellers and guide vanes of high capacity and pressure seawater desalination pumps by using computational fluid dynamics (CFD). The single-stage pump is numerically calculated, and its external characteristics are consistent with the test results of model pump. Taking this scheme as a prototype, the research is carried out from three aspects: (i) the impeller blade outlet width; (ii) the number of impeller and guide vane blades; and (iii) the area ratio of impeller outlet to guide vane inlet. The results indicate that the blade outlet width significantly affects the pump head and efficiency. Appropriately increasing the number of guide vane blades or changing the number of impeller blades can improve efficiency and expand the high-efficiency area. Additionally, increasing the throat area of the guide vane has the opposite effect on the large flow and small flow area of the pump. An optimized hydraulic model design scheme is obtained.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Haifeng Jiao ◽  
Chong Sun ◽  
Songshan Chen

To study the influence of inlet guide vanes (IGVs) on the pressure pulsation of a shaft tubular pump, this paper first conducts an experiment to study IGVs. Then, numerical calculations of the shaft tubular pump with and without IGVs are performed to analyze the hydraulic performance and pressure fluctuation characteristics. Finally, the reliability and accuracy of the data are verified by a model test. Numerical simulation results show that with additional IGVs, the pressure pulsation amplitude at the impeller inlet first decreases and then increases under small-flow and design conditions but gradually increases under large-flow conditions. When the IGVs are added to the impeller inlet of the shaft tubular pump, the hydraulic loss in front of the impeller inlet increases, resulting in a significant drop in the head and efficiency of the pump device when the flow rate is less than 1.12 Qd; when the flow rate is greater than 1.12Qd, the head and efficiency of the pump device do not change significantly. IGVs can improve the condition of impeller water inflow and reduce pressure fluctuation on the blade surface.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012058
Author(s):  
D G Arkhipov ◽  
G A Khabakhpashov

Abstract The dynamics of perturbations of the interface of a two-layer Poiseuille flow in a flat closed inclined channel is studied. The velocity profiles of wave motion are analytically found neglecting dissipation, dispersion and pumping of perturbations. On the basis of the found solution, a nonlinear evolution integro-differential equation for plane moderately long perturbations of the interface of the liquids is derived. The coefficients of the equation are represented by integrals over the layer thicknesses from functions depending on the stationary flow and perturbation profiles. The equation takes into account viscous dissipation: one of the integrals in this equation corresponds to dissipation in lion-stationary boundary layers, and the other corresponds to the transfer of energy from the flow to the wave. For the case of small flow velocities, the coefficients of the equation are analytically calculated. The equation has also been generalized to the quasi-two-dimensional case when the gradients along the transversal coordinate are small.


2021 ◽  
Author(s):  
Bo Wang ◽  
Yunwei Li ◽  
Long Quan ◽  
Lianpeng Xia

Abstract There are the problems in the traditional pressure-compensation flow-control valve, such as low flow control accuracy, small flow control difficulty, and limited flow range. For this, a method of continuous control pressure drop Δprated (i.e. the pressure drop across the main throttling orifice) to control flow-control valve flow is proposed. The precise control of small flow is realized by reducing the pressure drop Δprated and the flow range is amplified by increasing pressure drop Δprated. At the same time, it can also compensate the flow force to improve the flow control accuracy by regulating the pressure drop Δprated. In the research, the flow-control valve with controllable pressure compensation capability (FVCP) was designed firstly and theoretically analyzed. Then the sub-model model of PPRV and the joint simulation model of the FVCP were established and verified through experiments. Finally, the continuous control characteristics of pressure drop Δprated, the flow characteristics, and flow force compensation were studied. The research results demonstrate that, compared with the traditional flow-control valve, the designed FVCP can adjust the compensation pressure difference in the range of 0∼3.4 MPa in real-time. And the flow rate can be altered within the range of 44%∼136% of the rated flow. By adjusting the compensation pressure difference to compensate the flow force, the flow control accuracy of the multi-way valve is improved, and the flow force compensation effect is obvious.


Author(s):  
Marcus Kaiser

We consider dynamic equilibria for flows over time under the fluid queuing model. In this model, queues on the links of a network take care of flow propagation. Flow enters the network at a single source and leaves at a single sink. In a dynamic equilibrium, every infinitesimally small flow particle reaches the sink as early as possible given the pattern of the rest of the flow. Although this model has been examined for many decades, progress has been relatively recent. In particular, the derivatives of dynamic equilibria have been characterized as thin flows with resetting, which allows for more structural results. Our two main results are based on the formulation of thin flows with resetting as a linear complementarity problem and its analysis. We present a constructive proof of existence for dynamic equilibria if the inflow rate is right-monotone. The complexity of computing thin flows with resetting, which occurs as a subproblem in this method, is still open. We settle it for the class of two-terminal, series-parallel networks by giving a recursive algorithm that solves the problem for all flow values simultaneously in polynomial time.


Author(s):  
Botai Su ◽  
Ce Yang ◽  
Hanzhi Zhang ◽  
Xin Shi ◽  
Li Fu

Abstract The casing-wall static pressure of the centrifugal compressor behaves the double-peak distribution in the circumference at small flow rates but the single-peak distribution at large flow rates. A previous study shows that the double-peak distribution is induced by the redistribution of impeller outlet flow rates. In this paper, by using the similar simplified method of directly imposing pressure boundary to the diffuser outlet, the original reason for the formation process difference of pressure distribution in the circumference at different operating conditions is further investigated. The results show that at large flow rates, under the combined action of the specific downstream pressure distribution and the flow performance of the compressor itself, alternating low/high velocity airflow zones similar to those at small flow rates cannot be established in the diffuser when the impeller outlet flow rates are redistributed. Therefore, the static pressure can only express the single-peak distribution in the circumference. In fact, whether the static pressure exhibits the double-peak or single-peak distribution in the circumference depends on whether the impeller outlet flow mutation can destroy the original flow balance. When the flow mutation is dominant, the double-peak distribution is created, whereas when the original flow balance is prevailing, the single-peak distribution is formed.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 2015
Author(s):  
Maciej Czekaj ◽  
Ernest Jamro ◽  
Kazimierz Wiatr

IP fragmentation is still prevalent on the Internet. Defragmented traffic is a prerequisite for many network processing algorithms. This work focuses on the size and organization of a flow table, which is an essential ingredient of the hardware IP defragmentation block. Previous research suggests that fragmented IP traffic is highly local, and a relatively small flow table (on the order of a thousand entries) can process most of the traffic. Samples of IP traffic were obtained from public data sources and used for a statistical analysis, revealing the key factors in achieving design goals. The findings were backed by an extensive design space exploration of the software defragmentation model, which resulted in the efficiency estimates. To provide a robust score of the simulation model, a new validation technique is employed that helps to overcome the limitations of the samples.


2021 ◽  
Vol 10 (2) ◽  
pp. 71
Author(s):  
Fajar Anggara

Application of Archimedes Screw Turbine (AST) on pico-hydro has been very popular due to its capability to has a high torque with small flow rate and environmentally friendly to biotic of vicinity. This study uses CFD to investigate AST performance when the number of blades is varied. Independency of mesh is conducted to find an efficient number of mesh and it is obtained at 80 thousand mesh. Variation A, B and C respectively has 4,6, and 9 blades varied to analyze the correspondence with torque, pressure loss and velocity contour. The results show that with a higher number of blades would make higher torque. This is because energy extraction from water would be more efficient at higher number blade. However, the side back at such number would arise such as the higher-pressure loss. This is corresponding to energy balance where a high delta pressure is proportional with a generated energy turbine. 


2021 ◽  
Vol 83 (6) ◽  
Author(s):  
James O. Thompson ◽  
Michael S. Ramsey

AbstractModeling lava flow propagation is important to determine potential hazards to local populations. Thermo-rheological models such as PyFLOWGO track downflow cooling and rheological responses for open-channel, cooling-limited flows. The dominant radiative cooling component is governed partly by the lava emissivity, which is a material property that governs the radiative efficiency. Emissivity is commonly treated as a constant in cooling models, but is shown here to vary with temperature. To establish the effect of temperature on emissivity, high spatiotemporal, multispectral thermal infrared data were acquired of a small flow emplaced from a tumulus. An inverse correlation between temperature and emissivity was found, which was then integrated into the PyFLOWGO model. Incorporating a temperature-dependent emissivity term results in a ∼5% increase in flow length and < 75% lower total cumulative heat flux for the small flow. To evaluate the scalability of this relationship, we applied the modified PyFLOWGO model to simulations of the 2018 Lower East Rift Zone fissure 8 flow, emplaced between May 27 and June 3. Our model improves the emplacement match because of the ~ 30% lower heat flux resulting in a ∼7% longer flow compared to modeling using a constant emissivity (0.95). This 5–7% increase in length prior to ocean entry, realized by an accurate temperature-dependent emissivity term, is critical for developing the most accurate model of future flow hazard assessments, particularly if population centers lie in the flow’s path.


2021 ◽  
Author(s):  
Brett Wendt ◽  
◽  
Adam Lewis ◽  
German Garcia ◽  
Hadrien Dumont ◽  
...  

Openhole oil sampling in the tight Middle Cretaceous reservoirs of Alaska can be challenging due to the proximity of the reservoir pressure to the fluid’s saturation pressure. Existing focused probe technologies commonly used in other conditions have limited application in these conditions because their small flow area means slow pumping rates, high drawdowns, and nonrepresentative fluid samples. Nonfocused inlets, such as 3D radial probes and straddle packers, are mostly used to sample in these reservoirs, but deep invasion and slow pumping rates mean using these alternatives leads to long station times. A new wireline formation testing platform has been field tested in three wells since 2018. The objectives included the evaluation of the platform’s abilities to pump at controlled speeds to keep flowing pressures always above the fluid’s expected saturation pressures. A new inlet was tested for focused sampling and higher flow rates with the intention of cutting operating time and improving sample quality. Also, increased sample container capacity enabled the collection of required sample volumes in fewer bottles, which resulted in a shorter and lighter sampling string configuration. A legacy pressure tool was added to the bottom of the new platform for pressure testing benchmarking. During the operation, the tool was positioned at target depth, and an automated routine inflated the inlet assembly to contact the formation. This automation cycle enables the tool to be ready for pumping in less than 15 minutes. In contrast, technologies used in previous operations required 30 to 45 minutes setup time before fluid cleanup could commence. Fluids were then flowed through the tool’s sample and guard lines with a sequence of commingling and focused pumping periods using two simultaneous pumps while assessing fluid quality with a downhole fluid analyzer. Strict control of the 1-cm3/s selected rate for both pumps provided fast cleanup in focused mode with less than 100-psi drawdown. This has never been achieved before in these reservoirs. First hydrocarbon breakthrough was observed less than an hour into the pumping period. Previous operations reported 4 hours or more for first hydrocarbon breakthrough. Three stations were performed, and 10 single-phase samples were collected in as many bottles. Thin-bedded interval testing was possible given the ability of the new platform to collect samples with either the sample or guard lines. Total operating time to complete the program was 30 hours. Comparison with data from similar operations in previous campaigns shows a decrease of 50% in operating time, faster rig- up and rig-down, and decreased cable tension. These latter two aspects add to operational efficiency and mitigation of risks. This case study summarizes several pioneering aspects of the new generation of wireline formation testing platforms. It was the first time a combination of the new and legacy technology was deployed and the first time that high-volume multiphase sample bottles were used during a field test. It was also one of the first applications of this new technology in North America.


Sign in / Sign up

Export Citation Format

Share Document