Spin wave differential circuit for realization of thermally stable magnonic sensors

2015 ◽  
Vol 106 (13) ◽  
pp. 132412 ◽  
Author(s):  
Taichi Goto ◽  
Naoki Kanazawa ◽  
Altansargai Buyandalai ◽  
Hiroyuki Takagi ◽  
Yuichi Nakamura ◽  
...  
1988 ◽  
Vol 49 (C8) ◽  
pp. C8-1599-C8-1600
Author(s):  
K. Nakamura ◽  
M. Mino ◽  
H. Yamazaki

1998 ◽  
Vol 512 ◽  
Author(s):  
C. Hecht ◽  
R. Kummer ◽  
A. Winnacker

ABSTRACTIn the context of spectral-hole burning experiments in 4H- and 6H-SiC doped with vanadium the energy positions of the V4+/5+ level in both polytypes were determined in order to resolve discrepancies in literature. From these numbers the band offset of 6H/4H-SiC is calculated by using the Langer-Heinrich rule, and found to be of staggered type II. Furthermore the experiments show that thermally stable electronic traps exist in both polytypes at room temperature and considerably above, which may result in longtime transient shifts of electronic properties.


1990 ◽  
Author(s):  
Elmer Klavetter ◽  
Tim O'Hern ◽  
Bill Marshall ◽  
Merrill Jr. ◽  
Frye Ray ◽  
...  

1984 ◽  
Vol 49 (6) ◽  
pp. 1448-1458
Author(s):  
Josef Kopešťanský

The effect of temperature and structure of the palladium surfaces on acetylene chemisorption was studied along with the interaction of the adsorbed layers with molecular and atomic hydrogen. The work function changes were measured and combined with the volumetric measurements and analysis of the products. At temperature below 100 °C, acetylene is adsorbed almost without dissociation and forms at least two different types of thermally stable adsorption complexes. Acetylene adsorbed at 200 °C is partly decomposed, especially in the low coverage region. Besides the above mentioned effects, the template effect of adsorbed acetylene was studied in the temperature range from -80° to 25 °C. It has been shown that this effect is a typical phenomenon of the palladium-acetylene system which is not due to surface impurities.


2019 ◽  
Vol 38 (24) ◽  
pp. 4615-4624 ◽  
Author(s):  
Alexander N. Selikhov ◽  
Andrey S. Shavyrin ◽  
Anton V. Cherkasov ◽  
Georgy K. Fukin ◽  
Alexander A. Trifonov

Sign in / Sign up

Export Citation Format

Share Document