Characterization on the phase separation behavior of styrene-butadiene rubber/polyisoprene/organoclay ternary blends under oscillatory shear

2015 ◽  
Vol 143 (11) ◽  
pp. 114903 ◽  
Author(s):  
Xianggui Liu ◽  
Xia Dong ◽  
Wei Liu ◽  
Qian Xing ◽  
Fasheng Zou ◽  
...  
2020 ◽  
Vol 29 (1) ◽  
pp. 15-28
Author(s):  
Amir A Abdelsalam ◽  
Sherif Araby ◽  
Salwa H El-Sabbagh ◽  
Ahmed Abdelmoneim ◽  
Mohsen A Hassan

Polymer blends lead to producing a new class of plastics, which may have better properties than being individual. In this study, the ternary blends of natural rubber (NR)/styrene-butadiene rubber (SBR)/nitrile rubber (NBR) were prepared via melt compounding, and then the physicomechanical properties of ternary NR/SBR/NBR blends were investigated. NR content was kept constant at 30 phr, while SBR and NBR fractions were varied simultaneously. The effect of the addition of 3 phr of ultrablend 4000 as compatibilizer on the compatibility of the rubber blends was studied. The results revealed that the use of the compatibilizer has significantly resulted in the clear stability of the scorch time and the optimum cure time of the blends. Tensile strength; stress at 100%, 200%, and 300% elongations; elongation at break %; compression strength; and compression set increase with the NBR content. There was a dramatic rise in the value of swelling ratio with the decrease of NBR. Moreover, the dynamic mechanical analysis showed some shifts in glass transition temperatures for blends to higher and lower temperatures as a function of the composition, which indicates the partial miscibility between the contributing components. Scanning electron microscopy of the tear fracture surfaces indicated that incorporation of NBR in the blends resulted in better adhesion of ternary blends and improved the tensile properties of ternary blends.


RSC Advances ◽  
2016 ◽  
Vol 6 (94) ◽  
pp. 92104-92114 ◽  
Author(s):  
Chen Kuang ◽  
Sahar Qavi ◽  
Reza Foudazi

In this work, the phase separation behavior of ternary blends of polystyrene/poly(vinyl methyl ether)/polyisoprene, PS/PVME/PI, and polystyrene/poly(vinyl methyl ether)/poly(ethyl methacrylate), PS/PVME/PEMA are investigated.


2019 ◽  
Vol 9 (23) ◽  
pp. 5188 ◽  
Author(s):  
Leslie Mariella Colunga-Sánchez ◽  
Beatriz Adriana Salazar-Cruz ◽  
José Luis Rivera-Armenta ◽  
Ana Beatriz Morales-Cepeda ◽  
Claudia Esmeralda Ramos-Gálvan ◽  
...  

In the present work, the evaluation of chicken feather particles (CFP) and styrene-butadiene/chicken feather (SBS-CF) composites as modifiers for asphalt binder is presented. It is well known that elastomers are the best asphalt modifiers, because their thermoplastic behavior assists asphalts in improving the range of their mechanical properties at both low and high temperatures. Nowadays, the use of natural products and byproducts as fillers for polymer matrices has been a matter of research, and the field of asphalt modification is not the exception. Chicken feather particles (CFP) is a waste material whose main component is keratin, which offers remarkable properties. In the present work, CFP was used as a filler of a styrene-butadiene rubber matrix (SBS) with radial structure, to obtain a composite intended as an asphalt modifier. Besides, raw CFP was also tested as an asphalt modifier. Physical, thermal and rheological properties of the modified asphalts were evaluated in order to determine their degree of modification with respect to the original asphalt. The results show that the addition of raw CFP improves some physical properties as penetration and decreases the phase separation; furthermore, the asphalt modified with CFP displayed similar rheological properties to those shown by the asphalt modified with SBS, while some other properties resulted in being even better, like the phase separation, with the advantage that the CFP comes from a natural waste product.


2012 ◽  
Vol 298 (10) ◽  
pp. 1085-1099 ◽  
Author(s):  
Hong Hai Le ◽  
Melanie Keller ◽  
Martin Hristov ◽  
Sybill Ilisch ◽  
Tung Hoang Xuan ◽  
...  

2020 ◽  
Vol 93 (9) ◽  
pp. 289-292
Author(s):  
Yumi SHIMIZU ◽  
Shuma SATHO ◽  
Taro NAKAJIMA ◽  
Hiroaki KOUZAI ◽  
Kiminori SHIMIZU

Sign in / Sign up

Export Citation Format

Share Document