Two Groups of Chaotic Vibrations in a Single-Degree-of-Freedom Maglev System

Author(s):  
Zhixiang Xu ◽  
Hideyuki Tamura

Abstract In this paper, a single-degree-of-freedom magnetic levitation dynamic system, whose spring is composed of a magnetic repulsive force, is numerically analyzed. The numerical results indicate that a body levitated by magnetic force shows many kinds of vibrations upon adjusting the system parameters (viz., damping, excitation amplitude and excitation frequency) when the system is excited by the harmonically moving base. For a suitable combination of parameters, an aperiodic vibration occurs after a sequence of period-doubling bifurcations. Typical aperiodic vibrations that occurred after period-doubling bifurcations from several initial states are identified as chaotic vibration and classified into two groups by examining their power spectra, Poincare maps, fractal dimension analyses, etc.

Author(s):  
S. F. Asokanthan ◽  
X. H. Wang ◽  
W. V. Wedig ◽  
S. T. Ariaratnam

Torsional instabilities in a single-degree-of-freedom system having variable inertia are investigated by means of Lyapunov exponents. Linearised analytical model is used for the purpose of stability analysis. Numerical schemes for simulating the top Lyapunov exponent for both deterministic and stochastic systems are established. Instabilities associated with the primary and the secondary sub-harmonic resonances have been identified by studying the sign of the top Lyapunov exponent. Predictions for the deterministic and the stochastic cases are compared. Instability conditions have been presented graphically in the excitation frequency-excitation amplitude-top Lyapunov exponent space. The effects of fluctuation density as well as that of damping on the stability behaviour of the system have been examined. Predicted instability conditions are adequate for the design of a variable-inertia system so that a range of critical speeds of operation may be avoided.


Author(s):  
Bo Yu ◽  
Albert C. J. Luo

Abstract In this paper, a semi-analytical approach was used to predict periodic motions in a single-degree-of-freedom system under both aerodynamic force and harmonic excitation. Using the implicit mappings, the predictions of period-1 motions varying with excitation frequency are obtained. Stability of the period-1 motions are discussed, and the corresponding eigenvalues of period-1 motions are presented. Finally, numerical simulations of stable period-1 motions are illustrated.


2013 ◽  
Vol 3 (4) ◽  
Author(s):  
Mariano Febbo ◽  
Jinchen Ji

AbstractThe steady-state response of forced single degree-of-freedom weakly nonlinear oscillators under primary resonance conditions can exhibit saddle-node bifurcations, jump and hysteresis phenomena, if the amplitude of the excitation exceeds a certain value. This critical value of excitation amplitude or critical forcing amplitude plays an important role in determining the occurrence of saddle-node bifurcations in the frequency-response curve. This work develops an alternative method to determine the critical forcing amplitude for single degree-of-freedom nonlinear oscillators. Based on Lagrange multipliers approach, the proposed method considers the calculation of the critical forcing amplitude as an optimization problem with constraints that are imposed by the existence of locations of vertical tangency. In comparison with the Gröbner basis method, the proposed approach is more straightforward and thus easy to apply for finding the critical forcing amplitude both analytically and numerically. Three examples are given to confirm the validity of the theoretical predictions. The first two present the analytical form for the critical forcing amplitude and the third one is an example of a numerically computed solution.


1989 ◽  
Vol 56 (4) ◽  
pp. 947-952 ◽  
Author(s):  
W. Szemplin´ska-Stupnicka ◽  
R. H. Plaut ◽  
J.-C. Hsieh

Nonlinear oscillations of a single-degree-of-freedom, parametrically-excited system are considered. The stiffness involves quadratic and cubic nonlinearities and models a shallow arch or buckled mechanism. The excitation frequency is assumed to be close to twice the natural frequency of the system. Numerical integration is used to obtain phase plane portraits, power spectra, and Poincare´ maps for large-time motions. Period-doubling bifurcations and several types of limit cycles and chaotic behavior are observed. Approximate analytical techniques are applied to analyze some of the limit cycles and transitions of behavior. The results are used to estimate the parameter region in which chaos may occur.


Author(s):  
Changwei Liang ◽  
You Wu ◽  
Lei Zuo

Mechanical motion rectifier (MMR) has been used as power takeoff system to harvest energy for different applications. The dynamics of single degree of freedom energy harvesting system with MMR is piecewise linear due to the engagement and disengagement of one-way clutches. The energy harvesting performance of single degree of freedom system with MMR under force and motion excitation are studied and compared with ideal linear damping and non-MMR system in this paper. Under harmonic force and motion excitation, the optimal excitation frequency and output power of MMR system is less sensitive to the power takeoff inertia compared with non-MMR system. Furthermore, the output power of MMR system under harmonic motion excitation is larger than non-MMR system. The performance index of MMR, non-MMR and linear damping systems are compared under random excitation. It is found that MMR system has a better performance over both non-MMR and linear damping system, which makes it a better choice for energy harvesting.


Sign in / Sign up

Export Citation Format

Share Document