Bifurcations and Chaos in a Minimal Neural Network: Forced Coupled Neurons

2021 ◽  
Vol 31 (10) ◽  
pp. 2150147
Author(s):  
Yo Horikawa

The bifurcations and chaos in a system of two coupled sigmoidal neurons with periodic input are revisited. The system has no self-coupling and no inherent limit cycles in contrast to the previous studies and shows simple bifurcations qualitatively different from the previous results. A symmetric periodic solution generated by the periodic input underdoes a pitchfork bifurcation so that a pair of asymmetric periodic solutions is generated. A chaotic attractor is generated through a cascade of period-doubling bifurcations of the asymmetric periodic solutions. However, a symmetric periodic solution repeats saddle-node bifurcations many times and the bifurcations of periodic solutions become complicated as the output gain of neurons is increasing. Then, the analysis of border collision bifurcations is carried out by using a piecewise constant output function of neurons and a rectangular wave as periodic input. The saddle-node, the pitchfork and the period-doubling bifurcations in the coupled sigmoidal neurons are replaced by various kinds of border collision bifurcations in the coupled piecewise constant neurons. Qualitatively the same structure of the bifurcations of periodic solutions in the coupled sigmoidal neurons is derived analytically. Further, it is shown that another period-doubling route to chaos exists when the output function of neurons is asymmetric.

2018 ◽  
Vol 28 (10) ◽  
pp. 1850123 ◽  
Author(s):  
Yo Horikawa ◽  
Hiroyuki Kitajima ◽  
Haruna Matsushita

Bifurcations and chaos in a network of three identical sigmoidal neurons are examined. The network consists of a two-neuron oscillator of the Wilson–Cowan type and an additional third neuron, which has a simpler structure than chaotic neural networks in the previous studies. A codimension-two fold-pitchfork bifurcation connecting two periodic solutions exists, which is accompanied by the Neimark–Sacker bifurcation. A stable quasiperiodic solution is generated and Arnold’s tongues emanate from the locus of the Neimark–Sacker bifurcation in a two-dimensional parameter space. The merging, splitting and crossing of the Arnold tongues are observed. Further, multiple chaotic attractors are generated through cascades of period-doubling bifurcations of periodic solutions in the Arnold tongues. The chaotic attractors grow and are destroyed through crises. Transient chaos and crisis-induced intermittency due to the crises are also observed. These quasiperiodic solutions and chaotic attractors are robust to small asymmetry in the output function of neurons.


2016 ◽  
Vol 26 (07) ◽  
pp. 1630016 ◽  
Author(s):  
Motomasa Komuro ◽  
Kyohei Kamiyama ◽  
Tetsuro Endo ◽  
Kazuyuki Aihara

We classify the local bifurcations of quasi-periodic [Formula: see text]-dimensional tori in maps (abbr. MT[Formula: see text]) and in flows (abbr. FT[Formula: see text]) for [Formula: see text]. It is convenient to classify these bifurcations into normal bifurcations and resonance bifurcations. Normal bifurcations of MT[Formula: see text] can be classified into four classes: namely, saddle-node, period doubling, double covering, and Neimark–Sacker bifurcations. Furthermore, normal bifurcations of FT[Formula: see text] can be classified into three classes: saddle-node, double covering, and Neimark–Sacker bifurcations. These bifurcations are determined by the type of the dominant Lyapunov bundle. Resonance bifurcations are well known as phase locking of quasi-periodic solutions. These bifurcations are classified into two classes for both MT[Formula: see text] and FT[Formula: see text]: namely, saddle-node cycle and heteroclinic cycle bifurcations of the [Formula: see text]-dimensional tori. The former is reversible, while the latter is irreversible. In addition, we propose a method for analyzing higher-dimensional tori, which uses one-dimensional tori in sections (abbr. ST[Formula: see text]) and zero-dimensional tori in sections (abbr. ST[Formula: see text]). The bifurcations of ST[Formula: see text] can be classified into five classes: saddle-node, period doubling, component doubling, double covering, and Neimark–Sacker bifurcations. The bifurcations of ST[Formula: see text] can be classified into four classes: saddle-node, period doubling, component doubling, and Neimark–Sacker bifurcations. Furthermore, we clarify the relationship between the bifurcations of ST[Formula: see text]/ST[Formula: see text] and the bifurcations of MT[Formula: see text]/FT[Formula: see text]. We present examples of all of these bifurcations.


2018 ◽  
Vol 29 (5) ◽  
pp. 845-868 ◽  
Author(s):  
M. P. BAILEY ◽  
G. DERKS ◽  
A. C. SKELDON

For more than 30 years the ‘two-process model’ has played a central role in the understanding of sleep/wake regulation. This ostensibly simple model is an interesting example of a non-smooth dynamical system, whose rich dynamical structure has been relatively unexplored. The two-process model can be framed as a one-dimensional map of the circle, which, for some parameter regimes, has gaps. We show how border collision bifurcations that arise naturally in maps with gaps extend and supplement the Arnold tongue saddle-node bifurcation set that is a feature of continuous circle maps. The novel picture that results shows how the periodic solutions that are created by saddle-node bifurcations in continuous maps transition to periodic solutions created by period-adding bifurcations as seen in maps with gaps.


2004 ◽  
Author(s):  
Jawaid I. Inayat-Hussain ◽  
Njuki W. Mureithi

This work reports on a numerical study undertaken to investigate the imbalance response of a rigid rotor supported by squeeze-film dampers. Two types of damper configurations were considered, namely, dampers without centering springs, and eccentrically operated dampers with centering springs. For a rotor fitted with squeeze-film dampers without centering springs, the study revealed the existence of three regimes of chaotic motion. The route to chaos in the first regime was attributed to a sequence of period-doubling bifurcations of the period-1 (synchronous) rotor response. A period-3 (one-third subharmonic) rotor whirl orbit, which was born from a saddle-node bifurcation, was found to co-exist with the chaotic attractor. The period-3 orbit was also observed to undergo a sequence of period-doubling bifurcations resulting in chaotic vibrations of the rotor. The route to chaos in the third regime of chaotic rotor response, which occurred immediately after the disappearance of the period-3 orbit due to a saddle-node bifurcation, was attributed to a possible boundary crisis. The transitions to chaotic vibrations in the rotor supported by eccentric squeeze-film dampers with centering springs were via the period-doubling cascade and type 3 intermittency routes. The type 3 intermittency transition to chaos was due to an inverse period-doubling bifurcation of the period-2 (one-half subharmonic) rotor response. The unbalance response of the squeeze-film-damper supported rotor presented in this work leads to unique non-synchronous and chaotic vibration signatures. The latter provide some useful insights into the design and development of fault diagnostic tools for rotating machinery that operate in highly nonlinear regimes.


2009 ◽  
Vol 2009 ◽  
pp. 1-14 ◽  
Author(s):  
Gen-qiang Wang ◽  
Sui Sun Cheng

Based on a continuation theorem of Mawhin, a unique periodic solution is found for a second-order nonlinear differential equation with piecewise constant argument.


1993 ◽  
Vol 03 (05) ◽  
pp. 1169-1176 ◽  
Author(s):  
E. H. ABED ◽  
H. O. WANG ◽  
J. C. ALEXANDER ◽  
A. M. A. HAMDAN ◽  
H.-C. LEE

Dynamic bifurcations, including Hopf and period-doubling bifurcations, are found to occur in a power system dynamic model recently employed in voltage collapse studies. The occurrence of dynamic bifurcations is ascertained in a region of state and parameter space linked with the onset of voltage collapse. The work focuses on a power system model studied by Dobson & Chiang [1989]. The presence of the dynamic bifurcations, and the resulting implications for dynamic behavior, necessitate a re-examination of the role of saddle node bifurcations in the voltage collapse phenomenon. The bifurcation analysis is performed using the reactive power demand at a load bus as the bifurcation parameter. It is determined that the power system model under consideration exhibits two Hopf bifurcations in the vicinity of the saddle node bifurcation. Between the Hopf bifurcations, i.e., in the "Hopf window," period-doubling bifurcations are found to occur. Simulations are given to illustrate the various types of dynamic behaviors associated with voltage collapse for the model. In particular, it is seen that an oscillatory transient may play a role in the collapse.


2019 ◽  
Vol 149 (5) ◽  
pp. 1135-1152 ◽  
Author(s):  
José Godoy ◽  
Manuel Zamora

AbstractAs a consequence of the main result of this paper efficient conditions guaranteeing the existence of a T −periodic solution to the second-order differential equation $${u}^{\prime \prime} = \displaystyle{{h(t)} \over {u^\lambda }}$$are established. Here, h ∈ L(ℝ/Tℤ) is a piecewise-constant sign-changing function and the non-linear term presents a weak singularity at 0 (i.e. λ ∈ (0, 1)).


2009 ◽  
Vol 19 (08) ◽  
pp. 2515-2530 ◽  
Author(s):  
ZHAOPING HU ◽  
MAOAN HAN

In this paper, we use the method of displacement functions to study the existence, stability and bifurcation of periodic solutions of scalar periodic impulsive differential equations. We obtain some new and interesting results on saddle-node bifurcation and double-period bifurcation of periodic solution.


1985 ◽  
Vol 52 (2) ◽  
pp. 446-452 ◽  
Author(s):  
S. Tousi ◽  
A. K. Bajaj

Weakly nonlinear and harmonically forced two-degree-of-freedom mechanical systems with cubic nonlinearities and exhibiting internal resonance are studied for their steady-state solutions. Using the method of averaging, the system is transformed into a four-dimensional autonomous system in amplitude and phase variables. It is shown that for low damping the constant solutions of the averaged equations are unstable over some interval in detuning. The transition in stability is due to the Hopf bifurcation and the averaged system performs limit cycle motions near the critical value of detuning. The bifurcated periodic solutions are constructed via a numerical algorithm and their stability is analyzed using Floquet theory. It is seen that the periodic branch connects two Hopf points in the steady-state response curves. For sufficiently small damping, the averaged equations, therefore, have stable limit cycles where the constant solutions are unstable. Reduction in damping results in destabilization of these periodic solutions with one Floquet multiplier leaving the inside of the unit circle through −1. This leads to period-doubling bifurcations in the averaged equations. There is, thus, an interval in detuning parameter over which the constant and the periodic solutions are unstable and the period-doubled solutions are stable. For small enough damping there are cascades of period-doubling bifurcations that ultimately lead to chaotic motions. Some of these sequences seem to be compatible with the Feigenbaum Universality Constant.


Sign in / Sign up

Export Citation Format

Share Document