The influence of dicarboxylic acids: Oxalic acid and tartaric acid on the compressive strength of glass ionomer cements

2016 ◽  
Author(s):  
Ahmadi Jaya Permana ◽  
Harsasi Setyawati ◽  
Hamami ◽  
Irmina Kris Murwani
2012 ◽  
Vol 17 (6) ◽  
pp. 154-159 ◽  
Author(s):  
Marcel M. Farret ◽  
Eduardo Martinelli de Lima ◽  
Eduardo Gonçalves Mota ◽  
Hugo Mitsuo S. Oshima ◽  
Gabriela Maguilnik ◽  
...  

OBJECTIVE: To evaluate the mechanical properties of three glass ionomers cements (GICs) used for band cementation in Orthodontics. METHODS: Two conventional glass ionomers (Ketac Cem Easy mix/3M-ESPE and Meron/Voco) and one resin modified glass ionomer (Multi-cure Glass ionomer/3M-Unitek) were selected. For the compressive strength and diametral tensile strength tests, 12 specimens were made of each material. For the microhardness test 15 specimens were made of each material and for the shear bond strength tests 45 bovine permanent incisors were used mounted in a self-cure acrylic resin. Then, band segments with a welded bracket were cemented on the buccal surface of the crowns. For the mechanical tests of compressive and diametral tensile strength and shear bond strength a universal testing machine was used with a crosshead speed of 1,0 mm/min and for the Vickers microhardness analysis tests a Microdurometer was used with 200 g of load during 15 seconds. The results were submitted to statistical analysis through ANOVA complemented by Tukey's test at a significance level of 5%. RESULTS: The results shown that the Multi-Cure Glass Ionomer presented higher diametral tensile strength (p < 0.01) and compressive strength greater than conventional GICs (p = 0.08). Moreover, Ketac Cem showed significant less microhardness (p < 0.01). CONCLUSION: The resin-modified glass ionomer cement showed high mechanical properties, compared to the conventional glass ionomer cements, which had few differences between them.


2007 ◽  
Vol 21 (3) ◽  
pp. 204-208 ◽  
Author(s):  
André Mallmann ◽  
Jane Clei Oliveira Ataíde ◽  
Rosa Amoedo ◽  
Paulo Vicente Rocha ◽  
Letícia Borges Jacques

The purpose of this study was to evaluate the compressive strength of two glass ionomer cements, a conventional one (Vitro Fil® - DFL) and a resin-modified material (Vitro Fil LC® - DFL), using two test specimen dimensions: One with 6 mm in height and 4 mm in diameter and the other with 12 mm in height and 6 mm in diameter, according to the ISO 7489:1986 specification and the ANSI/ADA Specification No. 66 for Dental Glass Ionomer Cement, respectively. Ten specimens were fabricated with each material and for each size, in a total of 40 specimens. They were stored in distilled water for 24 hours and then subjected to a compressive strength test in a universal testing machine (EMIC), at a crosshead speed of 0.5 mm/min. The data were statistically analyzed using the Kruskal-Wallis test (5%). Mean compressive strength values (MPa) were: 54.00 ± 6.6 and 105.10 ± 17.3 for the 12 mm x 6 mm sample using Vitro Fil and Vitro Fil LC, respectively, and 46.00 ± 3.8 and 91.10 ± 8.2 for the 6 mm x 4 mm sample using Vitro Fil and Vitro Fil LC, respectively. The resin-modified glass ionomer cement obtained the best results, irrespective of specimen dimensions. For both glass ionomer materials, the 12 mm x 6 mm matrix led to higher compressive strength results than the 6 mm x 4 mm matrix. A higher variability in results was observed when the glass ionomer cements were used in the larger matrices.


2011 ◽  
Vol 11 (4) ◽  
pp. 210-214
Author(s):  
Ramashanker ◽  
Raghuwar D. Singh ◽  
Pooran Chand ◽  
Sunit Km. Jurel ◽  
Shuchi Tripathi

2017 ◽  
Vol 16 ◽  
pp. 1-9
Author(s):  
Juliana de Carvalho Machado ◽  
Cristiane Duque ◽  
Josânia Pitzer de Oliveira ◽  
Angela Scarparo Caldo-Teixeira

Aims: To evaluate the effect of the chlorhexidine (CHX) incorporation and the storage time on the mechanical properties of glass ionomer cements (GICs). Methods: The following GICs were evaluated: Ketac Molar Easymix (KM), Vidrion R (VR) and Vitromolar (VM), containing or not CHX.  GIC liquid was modified by adding 1.25 % CHX digluconate and then manipulated with the power and placed into the stainless steel cylindrical or bar-shaped molds. GICs specimens were stored into water for 1, 7 and 28 days. After these periods, specimens were submitted to flexural, diametral tensile and compressive strength tests, according to ISO standards. Data from mechanical tests were statistically analyzed using 2-way ANOVA and Tukey tests. Results: Overall, the storage time did not influence any of the mechanical properties of the GICs tested. In contrast, the inclusion of CHX reduced significantly these properties for all GICs tested. KM presented the highest values of compressive strength for all storage times. KM + 1.25% CHX had lower compressive strength results than KM, however, it showed similar results when compared to another GICs without CHX. Conclusions: The presence of chlorhexidine, independent of the storage time, interfered on the mechanical characteristics of GIC.


1976 ◽  
Vol 55 (6) ◽  
pp. 1023-1031 ◽  
Author(s):  
Stephen Crisp ◽  
Alan D. Wilson

A description is given of the effect on the ASPA cement reaction of tartaric acid incorporated in the cement liquid. Tartaric acid acts as an accelerator that aids in the extraction of ions from the aluminosilicate glass and facilitates their binding to the polyanion chains. Postgelation hardening is significantly increased. Working time is unaffected possibly because cations are initially present as complexes.


1992 ◽  
Vol 71 (12) ◽  
pp. 1871-1874 ◽  
Author(s):  
H.M. Anstice ◽  
J.W. Nicholson ◽  
J.F. McCabe

Compressive strength is widely used as the criterion of strength of glass-ionomer dental cements, despite the difficulties in interpretation of the findings. With the introduction of light-cured glass-ionomer cements, which can be used only in thin layers, the question arises of how test specimens should be prepared for the measurement of compressive strength. A suggested method has been to prepare test pieces by building them up in layers, an approach which is examined critically in the current paper. Two different conventional (acid-base) glass-ionomers were studied with the use of layered and unlayered specimens of dimensions 6 mm (height) x 4 mm (diameter) and 12 mm (height) x 6 mm (diameter). While smaller samples gave the same value of compressive strength as larger specimens, layered specimens gave significantly lower values of compressive strength for both sizes. In view of these findings, and since the layered specimens are tedious to prepare, we conclude that compressive strength is unsatisfactory as a criterion of strength for light-cured glass-ionomer cements.


Sign in / Sign up

Export Citation Format

Share Document