Alleviation of salt-induced oxidative damage by 5-aminolevulinic acid in wheat seedlings

Author(s):  
Mucip Genişel ◽  
Serkan Erdal
2003 ◽  
Vol 409 (2) ◽  
pp. 349-356 ◽  
Author(s):  
Maria E.M Rocha ◽  
Fernando Dutra ◽  
Brian Bandy ◽  
Regina L Baldini ◽  
Suely L Gomes ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0238754
Author(s):  
Melissa Martinez ◽  
Gregory A. Fendley ◽  
Alexandra D. Saxberg ◽  
Maria E. Zoghbi

Heme biosynthesis occurs through a series of reactions that take place within the cytoplasm and mitochondria, so intermediates need to move across these cellular compartments. However, the specific membrane transport mechanisms involved in the process are not yet identified. The ATP-binding cassette protein ABCB10 is essential for normal heme production, as knocking down this transporter in mice is embryonically lethal and accompanied by severe anemia plus oxidative damage. The role of ABCB10 is unknown, but given its location in the inner mitochondrial membrane, it has been proposed as a candidate to export either an early heme precursor or heme. Alternatively, ABCB10 might transport a molecule important for protection against oxidative damage. To help discern between these possibilities, we decided to study the effect of heme analogs, precursors, and antioxidant peptides on purified human ABCB10. Since substrate binding increases the ATP hydrolysis rate of ABC transporters, we have determined the ability of these molecules to activate purified ABCB10 reconstituted in lipid nanodiscs using ATPase measurements. Under our experimental conditions, we found that the only heme analog increasing ABCB10 ATPase activity was Zinc-mesoporphyrin. This activation of almost seventy percent was specific for ABCB10, as the ATPase activity of a negative control bacterial ABC transporter was not affected. The activation was also observed in cysteine-less ABCB10, suggesting that Zinc-mesoporphyrin’s effect did not require binding to typical heme regulatory motifs. Furthermore, our data indicate that ABCB10 was not directly activated by neither the early heme precursor delta-aminolevulinic acid nor glutathione, downsizing their relevance as putative substrates for this transporter. Although additional studies are needed to determine the physiological substrate of ABCB10, our findings reveal Zinc-mesoporphyrin as the first tool compound to directly modulate ABCB10 activity and raise the possibility that some actions of Zinc-mesoporphyrin in cellular and animal studies could be mediated by ABCB10.


1997 ◽  
Vol 23 (1) ◽  
pp. 40-46 ◽  
Author(s):  
Fernando G. Princ ◽  
Adela Ana Juknat ◽  
Andrea Grisel Maxit ◽  
Carina Cardalda ◽  
Alcira Battle

2019 ◽  
Vol 5 (01) ◽  
pp. 16-22
Author(s):  
Nalini Pandey ◽  
Laxmi Verma

Nitric oxide (NO) is an important bioactive signaling molecule in plants which modulates a variety of physiological processes and responses to abiotic and biotic stresses. In this study, the effects of exogenous NO supplied as sodium nitroprusside (SNP) in wheat seedlings under ironinduced oxidative damage was investigated. An appropriate concentration of NO was determined by conducting a preliminary experiment. In solution culture, wheat seeds were grown in the control (100 μM Fe), and toxic Fe (400 μM Fe) levels and the toxic Fe supply was treated with various levels of (50, 100, 200 and 500 μM) sodium nitroprusside (SNP). The results indicated that 400 μM Fe significantly decreased percentage germination, tolerance index, root lengths as well as fresh and dry weight compared to control. Exogenous SNP attenuated the inhibition of wheat seed germination. The promoting effect was most pronounced at 100 μM SNP. The accumulated concentration of iron and active Fe was significantly decreased by SNP treated Fe toxic seedlings. Toxicity of Fe caused oxidative stress by elevating hydrogen peroxide (H2O2), malondialdehyde (MDA) and proline contents in roots of wheat seedlings. One hundred μM SNP counteracted Fe toxicity by reducing the H2O2, MDA and proline contents of toxic Fe exposed seedlings. Meanwhile, application of SNP markedly reduced the activities of superoxide dismutases (SOD), catalases (CAT), peroxidase (POD), ascorbate peroxidases (APX), non protein thiols (NPT) and of glutathione reductase (GR) and increased ascorbate (ASc) compared with Fe toxic treatment alone, thereby indicating the modulation of the antioxidative capacity in the root under Fe stress by NO. The results indicated that the exogenous application of SNP, improved the antioxidant enzymes activity of wheat seedlings against Fe induced oxidative stress.


2020 ◽  
Author(s):  
Melissa Martinez ◽  
Gregory A. Fendley ◽  
Alexandra D. Saxberg ◽  
Maria E. Zoghbi

AbstractHeme biosynthesis occurs through a series of reactions that take place within the cytoplasm and mitochondria, thus intermediates need to move across these cellular compartments. However, the specific membrane transport mechanisms involved in the process are not yet identified. The ATP-binding cassette protein ABCB10 is essential for normal heme production, as knocking down this transporter in mice is embryonically lethal and accompanied by severe anemia plus oxidative damage. The role of ABCB10 is unknown, but given its location in the inner mitochondrial membrane, it has been proposed as a candidate to export either an early heme precursor or heme. Alternatively, ABCB10 might transport a molecule important for protection against oxidative damage. To help discern between these possibilities, we decided to study the effect of heme analogs, precursors and antioxidant peptides on purified human ABCB10. Since substrate binding increases the ATP hydrolysis rate of ABC transporters, we have determined the ability of these molecules to activate purified ABCB10 reconstituted in lipid nanodiscs using ATPase measurements. Under our experimental conditions, we found that the only heme analog increasing ABCB10 ATPase activity was Zinc-mesoporphyrin. This activation of almost seventy percent was specific for ABCB10, as the ATPase activity of a negative control bacterial ABC transporter was not affected. The activation was also observed in cysteine-less ABCB10, suggesting that Zinc-mesoporphyrin’s effect did not require binding to typical heme regulatory motifs. Furthermore, our data indicate that ABCB10 was not directly activated by neither the early heme precursor delta-aminolevulinic acid nor glutathione, downsizing their relevance as putative substrates for this transporter. Although additional studies are needed to determine the physiological substrate of ABCB10, our findings reveal Zinc-mesoporphyrin as the first tool compound to directly modulate ABCB10 activity and raise the possibility that some actions of Zinc-mesoporphyrin in cellular and animal studies could be mediated by ABCB10.


Author(s):  
Marcelo Hermes-Lima ◽  
Roger F. Castilho ◽  
Valderez G.R. Valle ◽  
Etelvino J.H. Bechara ◽  
Anibal E. Vercesi

1994 ◽  
Vol 1188 (1-2) ◽  
pp. 86-92 ◽  
Author(s):  
Anibal E. Vercesi ◽  
Roger F. Castilho ◽  
AndréR. Meinicke ◽  
Valderez G.R. Valle ◽  
Marcelo Hermes-Lima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document