The Poisson Gamma distribution for wind speed data

2016 ◽  
Author(s):  
Selen Çakmakyapan ◽  
Gamze Özel
2021 ◽  
Author(s):  
Benedict Troon

Kenya is one of the countries in the world with a good quantity of wind. This makes the country to work ontechnologies that can help in harnessing the wind with a vision of achieving a total capacity of 2GW of wind energy by 2030.The objective of this research is to find the best three-parameter wind speed distribution for examining wind speed using the maximum likelihood fitting technique. To achieve the objective, the study used hourly wind speed data collected for a period of three years (2016 – 2018) from five sites within Narok County. The study examines the best distributions that the data fits and then conducted a suitability test of the distributions using the Kolmogorov-Smirnov test. The distribution parameters were fitted using maximum likelihood technique and model comparison test conducted using Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion (BIC) values with the decision rule that the best distribution relies on the distribution with the smaller AIC and BIC values. The research showed that the best distribution is the gamma distribution with the shape parameter of 2.071773, scale parameter of 1.120855, and threshold parameter of 0.1174. A conclusion that gamma distribution is the best three-parameter distribution for examining the Narok country wind speed data


Erdkunde ◽  
2015 ◽  
Vol 69 (1) ◽  
pp. 3-19 ◽  
Author(s):  
Julia Wagemann ◽  
Boris Thies ◽  
Rütger Rollenbeck ◽  
Thorsten Peters ◽  
Jörg Bendix

2021 ◽  
Vol 15 (1) ◽  
pp. 613-626
Author(s):  
Shahab S. Band ◽  
Sayed M. Bateni ◽  
Mansour Almazroui ◽  
Shahin Sajjadi ◽  
Kwok-wing Chau ◽  
...  

2013 ◽  
Vol 37 (6) ◽  
pp. 605-616 ◽  
Author(s):  
L. Mayor Salgado ◽  
R.N. Farrugia ◽  
C. Galdies ◽  
T. Sant

2004 ◽  
Vol 29 (14) ◽  
pp. 2111-2131 ◽  
Author(s):  
Hafzullah Aksoy ◽  
Z Fuat Toprak ◽  
Ali Aytek ◽  
N Erdem Ünal

2014 ◽  
Vol 53 (3) ◽  
pp. 660-675 ◽  
Author(s):  
Megan C. Kirchmeier ◽  
David J. Lorenz ◽  
Daniel J. Vimont

AbstractThis study presents the development of a method to statistically downscale daily wind speed variations in an extended Great Lakes region. A probabilistic approach is used, predicting a daily-varying probability density function (PDF) of local-scale daily wind speed conditioned on large-scale daily wind speed predictors. Advantages of a probabilistic method are that it provides realistic information on the variance and extremes in addition to information on the mean, it allows the autocorrelation of downscaled realizations to be tuned to match the autocorrelation of local-scale observations, and it allows flexibility in the use of the final downscaled product. Much attention is given to fitting the proper functional form of the PDF by investigating the observed local-scale wind speed distribution (predictand) as a function of the decile of the large-scale wind (predictor). It is found that the local-scale standard deviation and the local-scale shape parameter (from a gamma distribution) are nonconstant functions of the large-scale predictor. As such, a vector generalized linear model is developed to relate the large-scale and local-scale wind speeds. Maximum likelihood and cross validation are used to fit local-scale gamma distribution shape and scale parameters to the large-scale wind speed. The result is a daily-varying probability distribution of local-scale wind speed, conditioned on the large-scale wind speed.


2021 ◽  
pp. 0309524X2110287
Author(s):  
Chantelle Y Janse van Vuuren ◽  
Hendrik J Vermeulen ◽  
Matthew Groch

The optimized siting of grid-scale renewable generation is a viable technique to minimize the variable component of the electricity generation portfolio. This process, however, requires simulated meteorological datasets, and consequently, significant computational power to perform detailed studies. This is particularly true for countries with large geographic areas. Clustering is a viable data reduction technique that can be utilized to reduce the computational burden. This work proposes the use of Self-Organizing Maps to partition high-dimensional wind speed data using statistical features derived from Time-Of-Use tariff periods. This approach is undertaken with the view towards the optimization of wind farm siting for grid-support objectives where tariff incentivization is the main driver. The proposed approach is compared with clusters derived using Self-Organizing Maps with the temporal wind speed data for the input feature set. The results show increased cluster granularity, superior validation results and decreased execution time when compared with the temporal clustering approach.


Sign in / Sign up

Export Citation Format

Share Document