scholarly journals Low-cost small scale parabolic trough collector design for manufacturing and deployment in Africa

Author(s):  
Matthew Orosz ◽  
Paul Mathaha ◽  
Anadola Tsiu ◽  
B. M. Taele ◽  
Lengeta Mabea ◽  
...  
Author(s):  
P. Kohlenbach ◽  
S. McEvoy ◽  
W. Stein ◽  
A. Burton ◽  
K. Wong ◽  
...  

This paper presents component performance results of a new parabolic trough collector array driving an organic Rankine cycle (ORC) power generation system. The system has been installed in the National Solar Energy Centre at CSIRO Energy Technology in Newcastle, NSW, Australia. It consists of four rows of 18 parabolic mirrors each in a 2×2 matrix with a total aperture area of approximately 132m2. The absorber tube is a laterally aligned, 40mm copper tube coated with a semi-selective paint and enclosed in a 50mm non-evacuated glass tube to reduce convection losses. The mirror modules, which are light-weight and robust, are made from thin low iron back silvered glass bonded to a sheet steel substrate. They are supported by a box truss on semi circular hoops running on rollers for single axis tracking. The mirror design has been chosen to allow low-cost manufacturing as well as simple commissioning and operation. The ORC unit is a FP6 unit sourced from Freepower Ltd. with a net power output of 6kWel at 180°C inlet temperature and a total heat input of 70 kWth. It uses a two-stage expansion process with hydrofluoroether as the working fluid. A wet cooling tower is used to dissipate the reject heat from the ORC. The two key components of the envisioned system are the trough reflector/receiver and the ORC unit. The optical performance of the mirror elements was investigated with regard to the flux mapping onto the receiver tube. The ORC unit has been tested separately using an electrical oil heater as the heat source. This paper presents results for irradiation capture and intensity over the receiver width of a single trough mirror module. The complete system including trough collectors and ORC has not been in transient operation yet, thus experimental steady-state results of the ORC unit are presented.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6142
Author(s):  
Richard Felsberger ◽  
Armin Buchroithner ◽  
Bernhard Gerl ◽  
Hannes Wegleiter

In the field of solar power generation, concentrator systems, such as concentrator photovoltaics (CPV) or concentrated solar power (CSP), are subject of intensive research activity, due to high efficiencies in electrical power generation compared to conventional photovoltaics (PV) and low-cost energy storage on the thermal side. Even though the idea of combining the thermal and electrical part in one absorber is obvious, very few hybrid systems (i.e., concentrator photovoltaics-thermal systems (CPV-T)) are either described in literature or commercially available. This paper features the conversion of a commercial thermal parabolic trough collector to a CPV-T hybrid system using multi-junction PV cells. The design process is described in detail starting with the selection of suitable PV cells, elaborating optical and mechanical system requirements, heat sink design and final assembly. Feasibility is proven by practical tests involving maximum power point tracking as well as empirical determination of heat generation and measurement results are presented.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Ahmed Ullah ◽  
◽  
Asim Mushtaq ◽  
Rizwan Ahmed Qamar ◽  
Zaeem Uddin Ali ◽  
...  

The significance of sustainable power source has expanded because of environmental change and worldwide cautioning concerns because of its renewing quality. Solar energy is the focal point of numerous examinations due to modern industrial applications and small scale local applications in emerging nations. Solar energy is being bridled, either specifically utilizing photovoltaic or secondarily utilizing concentrated solar power. This study aims to design and fabricate a small scale concentrated solar power (CSP) plant using linear parabolic trough. Linear parabolic trough collector is used because of high efficiency and exceedingly prescribed kind of CSP. The scope of this study is to develop a CSP plant and also study the properties of various thermal fluids and expect the best transfer medium. The study done in this research is based on carrying out a detailed energy balance scheme for a linear parabolic trough collector while observing twenty-six vital design parameters, including the geometric measurements and material properties of concentrator and receiver pipe, thermal fluids properties, and operating conditions. Modeling of the system is carried out for different thermal fluids that are deemed viable for use. It was found that the results obtained from the fabricated parabolic trough CSP were used to verify the model and compare with the theoretical results. The conclusions deduced from this study will help design both small and large scale applications of linear parabolic troughs.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4438
Author(s):  
Gilioli ◽  
Abbiati ◽  
Fossati ◽  
Cadini ◽  
Manes ◽  
...  

In the present work an experimental program aimed at assessing the mechanical behavior of an innovative parabolic solar trough is presented. More specifically, a lightweight and low-cost collector making large use of adhesive joints, which can be easily assembled on-site, still performing at a high efficiency, was designed. Static and fatigue tests were performed on a full-scale prototype of the collector in the pre-production stage. The tests included differential torsion, concentrated and distributed bending, and distributed load (wind effect). During the tests, a network of strain gauges was placed in the most critical locations to measure the strain field, while laser sensors and cable transducers were placed in strategic positions to measure the displacements. The results demonstrate the strengths of the innovative parabolic trough collector and support the assessment of its structural integrity.


2015 ◽  
Vol 46 (4) ◽  
pp. 347-368 ◽  
Author(s):  
Cheng Li ◽  
T. Yan ◽  
Ruzhu Wang ◽  
Liwei Wang ◽  
T. X. Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document