Stabilization of hydrocarbon fuel combustion by non-stationary electric field

Author(s):  
V. S. Kozulin ◽  
P. K. Tretyakov ◽  
A. V. Tupikin
2012 ◽  
Vol 38 (6) ◽  
pp. 503-512 ◽  
Author(s):  
P. V. Kopyl ◽  
O. S. Surkont ◽  
V. M. Shibkov ◽  
L. V. Shibkova

2021 ◽  
pp. 12-17
Author(s):  
M. A. Vaganov

It is proposed to use the methods of applied optical spectroscopy to solve the problem of control and diagnostics of gaseous hydrocarbon fuel combustion in this work. The results of an experimental study of spectroscopic informative parameters characterizing the propane combustion process are presented for three modes: combustion of pure propane without air supply, stoichiometric combustion and combustion with a change in the amount of supplied air relative to stoichiometric combustion. As a result of the experiment, it was found that the most intense bands in the emission spectrum of the flame arising from the combustion of propane correspond to the spectral bands of radicals of combustion products: OH, CH, and C2. While the intensities of various systems of bands in the flame spectrum depend significantly on the composition of the combustible mixture.


2018 ◽  
Author(s):  
P. K. Tretyakov ◽  
V. L. Krainev ◽  
A. M. Lazarev ◽  
A. V. Postnov

Author(s):  
Yury V. LISAKOV ◽  
Olga V. LAPSHINOVA ◽  
Nikolay M. PUSHKIN ◽  
Viktor P. KONOSHENKO ◽  
Nikolay V. MATVEEV ◽  
...  

The paper presents the results of analysis of electrical measurements performed in the space experiment "Impulse (stage 1)" on the Service module of the ISS RS. This experiment investigated the effects of the interaction of the charged component of the ionosphere to the surface of large KA, which is the ISS. This paper analyses the measurement of quasi-stationary electric field and current leakage, was, respectively, sensors of the vibration type and flat probes from the Complex control electrophysical parameters (CCEP), developed by SPJ MT. To study the dependence of measurements from the ionosphere flow direction to the surface of the ISS RS was installed two sets of sensors with the direction of the angle of "visibility" in the Nadir (towards the Earth) and to "satellite footprint " (against the velocity vector of the ISS). Carried out analysis of common regularities measurements depending on the sun-shadow environment on orbit ISS motions and depending on current geophysical dynamics of the ionosphere. Massive the measurements including more than 170 telemetric sessions were analyzed. More than 11000 hours of measurements current of leakage (or runoff current) and measurements of quasi-stationary electric field with discretization 1s and UT binding to each point were analysed. The data measurements, geophysical and orbital data were collected in an electronic album. It is shown that experimental data correlate with the crossing time of the ISS boundaries known geophysical structures: the noon Meridian, the Main ionospheric failure (MIF), the boundaries diffuse intrusion (BDI), the Equatorial Geomagnetic anomaly (EA). In this regard, despite the specificity of the ISS (the spacecraft super big sizes, the most complex spatial configuration) similar measurements, nevertheless, are quite suitable for monitoring researches of some features of an ionosphere at the level of F2 layer with a temporary scale from 1s and can be used for more detailed study of the geophysical structures and related effects in the ionosphere. In addition, the results obtained can be used for the analysis of disturbances of electromagnetic conditions near the surface of the ISS RS, for monitoring potential and currents of leakage on the surface of the ISS. Keywords: electrophysical measurements, sensors of the vibration type, flat probes, electric field, current leakage, geophysical structure, ionosphere


2018 ◽  
Author(s):  
V. S. Venediktov ◽  
P. K. Tretyakov ◽  
A. V. Tupikin

Author(s):  
N. A. Poklonski ◽  
A. O. Bury ◽  
N. G. Abrashina-Zhadaeva ◽  
S. A. Vyrko

An analytical and numerical modeling of the process of obtaining hydroxyl radicals OH0 and atomic hydrogen H0 from water molecules on a square lattice based on electrical neutralization of ions OH− on an anode and ions H+ on a cathode is conducted. The numerical solution of a system of equations describing a stationary migration of ions H+ and OH− over the interstitial sites of a square lattice located in an external electric field is considered. The ions H+ and OH− in the interstitial sites of a square lattice are generated as a result of dissociation of a water molecule under the action of external electromagnetic radiation and external constant (stationary) electric field. It is assumed that anode and cathode are unlimited ion sinks. The problem is solved using the finite difference approximation for the initial system of differential equations with the construction of an iterative process due to the nonlinearity of the constituent equations. It is shown by using calculation that the dependence of the ion current on a difference of electric potentials between anode and cathode is sublinear.


Sign in / Sign up

Export Citation Format

Share Document