scholarly journals Damage detection using high order longitudinal guided waves (HOLGW) in the anchorage zone of stayed cable

2017 ◽  
Author(s):  
Yong-dong Pan ◽  
Jian Jin ◽  
Feng Yang ◽  
Wei-zhen Chen
2012 ◽  
Vol 518 ◽  
pp. 174-183 ◽  
Author(s):  
Pawel Malinowski ◽  
Tomasz Wandowski ◽  
Wiesław M. Ostachowicz

In this paper the investigation of a structural health monitoring method for thin-walled parts of structures is presented. The concept is based on the guided elastic wave propagation phenomena. This type of waves can be used in order to obtain information about structure condition and possibly damaged areas. Guided elastic waves can travel in the medium with relatively low attenuation, therefore they enable monitoring of extensive parts of structures. In this way it is possible to detect small defects in their early stage of growth. It is essential because undetected damage can endanger integrity of a structure. In reported investigation piezoelectric transducer was used to excite guided waves in chosen specimens. Dispersion of guided waves results in changes of velocity with the wave frequency, therefore a narrowband signal was used. Measurement of the wave field was realized using laser scanning vibrometer that registered the velocity responses at points belonging to a defined mesh. An artificial discontinuity was introduced to the specimen. The goals of the investigation was to detect it and find optimal sensor placement for this task. Determination of the optimal placement of sensors is a very challenging mission. In conducted investigation laser vibrometer was used to facilitate the task. The chosen mesh of measuring points was the basis for the investigation. The purpose was to consider various configuration of piezoelectric sensors. Instead of using vast amount of piezoelectric sensors the earlier mentioned laser vibrometer was used to gather the necessary data from wave propagation. The signals gather by this non-contact method for the considered network were input to the damage detection algorithm. Damage detection algorithm was based on a procedure that seeks in the signals the damage-reflected waves. Knowing the wave velocity in considered material the damage position can be estimated.


2012 ◽  
Vol 47 ◽  
pp. 1185-1188 ◽  
Author(s):  
E. Köppe ◽  
M. Bartholmai ◽  
J. Prager

Abstract. Micro-damages such as pores, closed delamination/debonding and fiber/matrix cracks in carbon fiber reinforced plastics (CFRP) are vital factors towards the performance of composite structures, which could collapse if defects are not detected in advance. Nonlinear ultrasonic technologies, especially ones involving guided waves, have drawn increasing attention for their better sensitivity to early damages than linear acoustic ones. The combination of nonlinear acoustics and guided waves technique can promisingly provide considerable accuracy and efficiency for damage assessment and materials characterization. Herein, numerical simulations in terms of finite element method are conducted to investigate the feasibility of micro-damage detection in multi-layered CFRP plates using the second harmonic generation (SHG) of asymmetric Lamb guided wave mode. Contact acoustic nonlinearity (CAN) is introduced into the constitutive model of micro-damages in composites, which leads to the distinct SHG compared with material nonlinearity. The results suggest that the generated second order harmonics due to CAN could be received and adopted for early damage evaluation without matching the phase of the primary waves.


DYNA ◽  
2014 ◽  
Vol 81 (186) ◽  
pp. 226 ◽  
Author(s):  
Rito Mijarez ◽  
Arturo Baltazar ◽  
Joaquín Rodríguez-Rodríguez ◽  
José Ramírez-Niño

2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Rais Ahmad ◽  
Sourav Banerjee ◽  
Tribikram Kundu

It is well known that cylindrical guided waves are very efficient for detecting pipe wall defects when pipes are open in the air. In this paper it is investigated how efficient the guided waves are for detecting pipe wall damage when the pipes are embedded in the soil. For this purpose guided waves were propagated through pipes that were buried in the soil by placing transmitters on one end of the embedded pipe and receivers on the other end. Received signals for both defect-free and defective pipes were recorded. Then the received signals were subjected to wavelet transforms. To investigate whether embedding the pipe in the soil makes it more difficult to detect the pipe wall defects, the same set of defective and defect-free pipes were studied before and after burying them in the soil. In both cases the defective pipes could be easily identified. Interestingly, contrary to the intuition, it was observed that under certain conditions defective pipes could be identified more easily in buried conditions. For example, the difference between the strengths of the initial parts of the received signal from defect-free and dented pipes was found to be greater for the buried pipes. Some qualitative justification for easier detection of buried dented pipes is provided.


2019 ◽  
Vol 30 (18-19) ◽  
pp. 2919-2931 ◽  
Author(s):  
Ali Nokhbatolfoghahai ◽  
Hossein M Navazi ◽  
Roger M Groves

To perform active structural health monitoring, guided Lamb waves for damage detection have recently gained extensive attention. Many algorithms are used for damage detection with guided waves and among them, the delay-and-sum method is the most commonly used algorithm because of its robustness and simplicity. However, delay-and-sum images tend to have poor accuracy with a large spot size and a high noise floor, especially in the presence of multiple damages. To overcome these problems, another method that is based on sparse reconstruction can be used. Although the images produced by the sparse reconstruction method are superior to the conventional delay-and-sum method, it has the challenges of the time and cost of computations in comparison with the delay-and-sum method. Also, in some cases in multi-damage detection, the sparse reconstruction method totally fails. In this article, using prior support information of the structure achieved by the delay-and-sum method, a hybrid method based on sparse reconstruction method is proposed to improve the computational performance and robustness of sparse reconstruction method in the case of multi-damage presence. The effectiveness of the proposed method in detecting damages is demonstrated experimentally and numerically on a simple aluminum plate. The technique is also shown to accurately identify and localize multi-site damages as well as single damage with low sampled signals.


2018 ◽  
Vol 51 (24) ◽  
pp. 941-948 ◽  
Author(s):  
Mahjoub El Mountassir ◽  
Gilles Mourot ◽  
Slah Yaacoubi ◽  
Didier Maquin

2014 ◽  
Vol 598 ◽  
pp. 57-62 ◽  
Author(s):  
Michal Dziendzikowski ◽  
Krzysztof Dragan ◽  
Artur Kurnyta ◽  
Sylwester Klysz ◽  
Andrzej Leski

One of the approach to develop a system of continues, automated monitoring of the health of the structures is to use elastic waves excited in a given medium by piezoelectric transducers network. Elastic waves depending on their source and the geometry of the structure under consideration can propagate over significant distance. They are also sensitive to local structure discontinuities and deformations providing a tool to detect local damage of large aerospace structures. In the paper the issue of fatigue crack growth monitoring by means of elastic guided waves actuated by a sparse array of sensors will be presented. In particular we propose signal characteristics, robust enough to detect different kinds of damages: Barely Visible Impact Damages (BVIDs) in composite materials and fatigue cracks of metallic structures. The model description and the results of specimen tests verifying damage detection capabilities of the proposed signal characteristics are delivered in the paper. Some issues concerning the proposed damage indices and its application to damage detection and its monitoring are also discussed.


Sign in / Sign up

Export Citation Format

Share Document