scholarly journals Characterization of turbulent processes by the Raman lidar system BASIL during the HD(CP)2 observational prototype experiment – HOPE

Author(s):  
Paolo Di Girolamo ◽  
Donato Summa ◽  
Dario Stelitano ◽  
Marco Cacciani ◽  
Andrea Scoccione ◽  
...  
Keyword(s):  
2016 ◽  
Vol 119 ◽  
pp. 25006
Author(s):  
Paolo Di Girolamo ◽  
Donato Summa ◽  
Dario Stelitano ◽  
Marco Cacciani ◽  
Andrea Scoccione ◽  
...  

2018 ◽  
Vol 176 ◽  
pp. 04010
Author(s):  
Benedetto De Rosa ◽  
Paolo Di Girolamo ◽  
Donato Summa

In November 2012 the Raman Lidar system BASIL, located at the Univ. of Basilicata (Potenza), was approved to enter in NDACC, with the goal of providing accurate routine measurements of the vertical profiles of atmospheric temperature and water vapour mixing ratio. In this presentation we illustrate and discuss water vapour mixing ratio and temperature measurements carried out during these four years and their comparisons with the radiosondes launched from nearby Institute IMAA-CNR (7 km away).


2016 ◽  
Vol 119 ◽  
pp. 10005
Author(s):  
Paolo Di Girolamo ◽  
Donato Summa ◽  
Dario Stelitano ◽  
Marco Cacciani ◽  
Andrea Scoccione ◽  
...  
Keyword(s):  

1986 ◽  
Vol 25 (13) ◽  
pp. 2115 ◽  
Author(s):  
J. Douglas Houston ◽  
Sebastian Sizgoric ◽  
Arkady Ulitsky ◽  
John Banic

2021 ◽  
Author(s):  
Donato Summa ◽  
Fabio Madonna ◽  
Noemi Franco ◽  
Bendetto De Rosa ◽  
Paolo Di Girolamo

Abstract. This paper reports results from an inter-comparison effort involving different sensors/techniques used to measure the Atmospheric Boundary Layer (ABL) height. The effort took place in the framework of the first Special Observing Period of the Hydrological cycle of the Mediterranean Experiment (HyMeX-SOP1). Elastic backscatter and rotational Raman signals collected by the Raman lidar system BASIL were used to determine the ABL height and characterize its internal structure. These techniques were compared with co-located measurements from a wind profiler and radiosondes and with ECMWF-ERA5 data. In the effort we consider radiosondes launched in the proximity of the lidar site, as well as radiosondes launched from the closest radiosonde station included in the Integrated Global Radiosonde archive (IGRA). The inter-comparison effort considers data from October 2012. Results reveal a good agreement between the different approaches, with values of the correlation coefficient R2 in the range 0.52 to 0.94. Results clearly reveals that the combined application of different techniques to distinct sensors’ and model datasets allow getting accurate and cross-validated estimates of the ABL height over a variety of weather conditions. Furthermore, correlations between the ABL height and other atmospheric dynamic and thermodynamic variables as CAPE, friction velocity and relative humidity are also assessed to infer possible mutual dependences.


2021 ◽  
Author(s):  
Donato Summa ◽  
Paolo Di Girolamo ◽  
Noemi Franco ◽  
Benedetto De Rosa ◽  
Fabio Madonna ◽  
...  

<p>The exchange processes between the Earth and the atmosphere play a crucial role in the development of the Planetary Boundary Layer (PBL). Different remote sensing techniques can provide PBL measurement with different spatial and temporal resolutions. Vertical profiles of atmospheric thermodynamic variables, i.e.  temperature and humidity, or wind speed, clouds and aerosols can be used as proxy to retrieve PBL height from active and passive remote sensing instruments. The University of BASILicata ground-based Raman Lidar system (BASIL) was deployed in the North-Western Mediterranean basin in the Cévennes-Vivarais site (Candillargues, Southern France, Lat: 43°37' N, Long: 4° 4' E, Elev: 1 m) and operated between 5 September and 5 November 2012, collecting more than 600 hours of measurements, distributed over 51 days and 19 intensive observation periods (IOPs). BASIL is capable to provide high-resolution and accurate measurements of atmospheric temperature and water vapour, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV. This measurement capability makes BASIL a key instrument for the characterization of the water vapour concentration. BASIL makes use of a Nd:YAG laser source capable of emitting pulses at 355, 532 and 1064 nm, with a single pulse energy at 355nm of 500 mJ [1] .In the presented research effort, water vapour concentration was  computed and used to determine the PBL height. [2]. A dynamic index  included in the European Centre for Medium-range Weather Forecasts (ECMWF) ERA5 atmospheric reanalysis (CAPE, Friction velocity, etc.) is also considered and compared with BASIL resutls. ERA5 provides hourly data on regular latitude-longitude grids at 0.25° x 0.25° resolution at 37 pressure levels [3]. ERA5 is publicly available through the Copernicus Climate Data Store (CDS, https://cds.climate.copernicus.eu).  In order to properly carry out the comparison, the nearest ERA5 grid point to the lidar site has been considered assuming the representativeness uncertainty due to the use of the nearest grid-point comparable with other methods (e.g. kriging, bilinear interpolation, etc.). More results from this  measurement  effort will  be reported and discussed at the Conference.</p><p><strong>Reference</strong></p><p>[1] Di Girolamo, Paolo, De Rosa, Benedetto, Flamant, Cyrille, Summa, Donato, Bousquet, Olivier, Chazette, Patrick, Totems, Julien, Cacciani, Marco. Water vapor mixing ratio and temperature inter-comparison results in the framework of the Hydrological Cycle in the Mediterranean Experiment—Special Observation Period 1. BULLETIN OF ATMOSPHERIC SCIENCE AND TECHNOLOGY, ISSN: 2662-1495, doi: 10.1007/s42865-020-00008-3</p><p>[2] D. Summa, P. Di Girolamo, D. Stelitano, and M. Cacciani. Characterization of the planetary boundary layer height and structure by Raman lidar: comparison of different approaches  Atmos. Meas. Tech., 6, 3515–3525, 2013 www.atmos-meas-tech.net/6/3515/2013/doi:10.5194/amt-6-3515-2013</p><p>[3] Hersbach et al. The ERA5 global reanalysis Hans  https://doi.org/10.1002/qj.3803[3]</p>


2019 ◽  
Vol 99 ◽  
pp. 02010
Author(s):  
Ronny Engelmann ◽  
Julian Hofer ◽  
Abduvosit N. Makhmudov ◽  
Holger Baars ◽  
Karsten Hanbuch ◽  
...  

During the 18-month Central Asian Dust Experiment we conducted continuous lidar measurements at the Physical Technical Institute of the Academy of Sciences of Tajikistan in Dushanbe between 2015 and 2016. Mineral dust plumes from various source regions have been observed and characterized in terms of their occurrence, and their optical and microphysical properties with the Raman lidar PollyXT. Currently a new container-based lidar system is constructed which will be installed for continuous long-term measurements in Dushanbe.


2018 ◽  
Vol 176 ◽  
pp. 01017 ◽  
Author(s):  
Giovanni Martucci ◽  
Valentin Simeonov ◽  
Ludovic Renaud ◽  
Alexander Haefele

RAman Lidar for Meteorological Observations (RALMO) is operated at MeteoSwiss and provides continuous measurements of water vapor and temperature since 2010. While the water vapor has been acquired by a Licel acquisition system since 2008, the temperature channels have been migrated to a Fastcom P7888 acquisition system, since August 2015. We present a characterization of this new acquisition system, namely its dead-time, desaturation, temporal stability of the Pure Rotational Raman signals and the retrieval of the PRR-temperature.


Author(s):  
Toshihiro Somekawa ◽  
Shinri Kurahashi ◽  
Masayuki Fujita ◽  
Junji Kawanaka
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document