scholarly journals Antioxidant and antimicrobial activity of stingless bee bread and propolis extracts

Author(s):  
Rabieatul Adawieah Md Akhir ◽  
Mohd Fadzelly Abu Bakar ◽  
Shuaibu Babaji Sanusi
Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 555
Author(s):  
Nikos Asoutis Didaras ◽  
Ioannis Kafantaris ◽  
Tilemachos G. Dimitriou ◽  
Chrysanthi Mitsagga ◽  
Katerina Karatasou ◽  
...  

Bee bread is the only fermented product of the beehive. It constitutes the main source of proteins, lipids, vitamins, and macro- and microelements in honeybee nutrition and it exerts antioxidant and antimicrobial properties, though research on these aspects has been limited so far. In this study 18 samples of Greek bee bread, two of which were monofloral, were collected during different seasons from diverse locations such as Crete and Mount Athos and were tested for their bioactivity. Samples were analyzed for their antibacterial properties, antioxidant activity, total phenolic content (TPC), and total flavonoid content (TFC). The antimicrobial activity of each sample was tested against Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Salmonella typhimurium. Our data demonstrate that all samples exert inhibitory and most of them bactericidal activity against at least two pathogens. Furthermore, all samples exert significant antioxidant activity, where the monofloral Castanea Sativa sample demonstrated superior antioxidant activity. Nevertheless, the antioxidant and antimicrobial activity were not strongly correlated. Furthermore, machine learning methods demonstrated that the palynological composition of the samples is a good predictor of their TPC and ABTS activity. This is the first study that focuses on the biological properties of Greek bee bread and demonstrates that bee bread can be considered a functional food and a possible source of novel antimicrobial compounds.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
I Kosalec ◽  
M Zovko ◽  
K Sankovic ◽  
D Kremer ◽  
S Pepeljnjak

2019 ◽  
Vol 70 (7) ◽  
pp. 2519-2523
Author(s):  
Denisa Batir Marin ◽  
Oana Cioanca ◽  
Mihai Apostu ◽  
Cristina Gabriela Tuchilus ◽  
Cornelia Mircea ◽  
...  

The objective of the current study is represented by the determination of silica and a phytochemical screening of phenolic derivates of some Equisetum species. The antioxidant and antimicrobial activity for Equisetum pratense Ehrh.,, Equisetum sylvaticum L. and Equisetum telmateia Ehrh. (sin. Equisetum maximum Lam.) were also investigated. The concentration of silicon (Si) in plants was determined by the spectrophotometric method using previous treatment with NaOH 50% both for the stem and the nodal branches [1]. Results obtained varied from 95.12 to 162.10 SiO2 mg/g dry plant which represents 4.44% to 7.58% Si/100g dry sample. Two types of total extracts were obtained using different solvents and were subjected to qualitative and quantitative chemical analysis considering total phenolic content [2]. The highest concentration of investigated compounds was found in the methanolic extract, E. sylvaticum, 196.5mg/g dry sample. Antioxidant activity was monitored spectrophotometrically and expressed in terms of IC50 (�g/mL) [3]. Values gathered ranged from 261.7 to 429.5 �g/mL. The highest capacity to neutralized DPPH radicals was found in E. sylvaticum. In vitro antimicrobial activity was determined using difusimetric method [4]. Testing was performed on four microorganisms: three strains of bacteria and one species of fungi. Different effects were noticed against the bacteria, furthermore the methanol extract appeared to be most efficient. All extracts showed significand antimicrobial activity against Staphylococcus aureus (ATCC 25923) and Candida albicans (ATCC 90028) and weak to no activity against Pseudomonas aeruginosa (ATCC 27853) and Escherichia coli (ATCC 25922).


2015 ◽  
Vol 5 (2) ◽  
pp. 144-149
Author(s):  
Zamora Gabriel ◽  
Beukelman Kees ◽  
van den Berg Bert ◽  
Arias María Laura ◽  
Umaña Eduardo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document