scholarly journals An infinite dimensional KAM theorem with application to two dimensional completely resonant beam equation

2018 ◽  
Vol 59 (7) ◽  
pp. 072702 ◽  
Author(s):  
Jiansheng Geng ◽  
Shidi Zhou
2015 ◽  
Vol 25 (03) ◽  
pp. 1550043 ◽  
Author(s):  
Yixian Gao ◽  
Weipeng Zhang ◽  
Shuguan Ji

This paper is devoted to the study of quasi-periodic solutions of a nonlinear wave equation with x-dependent coefficients. Such a model arises from the forced vibration of a nonhomogeneous string and the propagation of seismic waves in nonisotropic media. Based on the partial Birkhoff normal form and an infinite-dimensional KAM theorem, we can obtain the existence of quasi-periodic solutions for this model under the general boundary conditions.


2010 ◽  
Vol 25 (06) ◽  
pp. 1253-1266
Author(s):  
TAMAR FRIEDMANN

We construct a classical dynamical system whose phase space is a certain infinite-dimensional Grassmannian manifold, and propose that it is equivalent to the large N limit of two-dimensional QCD with an O (2N+1) gauge group. In this theory, we find that baryon number is a topological quantity that is conserved only modulo 2. We also relate this theory to the master field approach to matrix models.


Author(s):  
Dingwu Xia ◽  
R. Cengiz Ertekin ◽  
Jang Whan Kim

The two-dimensional, nonlinear hydroelasticity of a mat-type VLFS is studied within the scope of linear beam theory for the structure and the nonlinear, Level I Green-Naghdi (GN) theory for the fluid. The beam equation and the GN equations are coupled through the kinematic and dynamic boundary conditions to obtain a new set of modified GN equations. These equations model long-wave motion beneath an elastic plate. A set of jump conditions that are necessary for the continuity (or the matching) of the solutions in the open water region and that under the structure is newly derived through the use of the postulated conservation laws of mass, momentum and mechanical energy. The resulting governing equations, subjected to the boundary and jump conditions, are solved by the finite-difference method in the time domain. The present model is applicable, for example, to the study of the hydroelastic response of a mat-type VLFS under the action of a solitary wave, or a frontal tsunami wave. Good agreement is observed between the present results and other published theoretical and numerical predictions, as well as experimental data. The nonlinear results show that consideration of nonlinearity is important for accurate predictions of the bending moment of the floating elastic plate. It is also found that the rigidity of the structure also greatly affects the bending moment and displacement of the structure in this nonlinear theory.


2020 ◽  
Vol 37 (4) ◽  
pp. 1348-1366 ◽  
Author(s):  
Flávio Luiz Cardoso-Ribeiro ◽  
Denis Matignon ◽  
Valérie Pommier-Budinger

Abstract The free surface motion in moving containers is an important physical phenomenon for many engineering applications. One way to model the free surface motion is by employing shallow water equations (SWEs). The port-Hamiltonian systems formulation is a powerful tool that can be used for modeling complex systems in a modular way. In this work, we extend previous work on SWEs using the port-Hamiltonian formulation, by considering the two-dimensional equations under rigid body motions. The resulting equations consist of a mixed-port-Hamiltonian system, with finite and infinite-dimensional energy variables and ports. 2000 Math Subject Classification: 34K30, 35K57, 35Q80, 92D25


1992 ◽  
Vol 143 (2) ◽  
pp. 371-403 ◽  
Author(s):  
Masafumi Fukuma ◽  
Hikaru Kawai ◽  
Ryuichi Nakayama

2014 ◽  
Vol 12 (11) ◽  
Author(s):  
Ryotaro Tanaka

AbstractThe notion of the frame of the unit ball of Banach spaces was introduced to construct a new calculation method for the Dunkl-Williams constant. In this paper, we characterize the frame of the unit ball by using k-extreme points and extreme points of the unit ball of two-dimensional subspaces. Furthermore, we show that the frame of the unit ball is always closed, and is connected if the dimension of the space is not less than three. As infinite dimensional examples, the frame of the unit balls of c 0 and ℓ p are determined.


1990 ◽  
Vol 05 (20) ◽  
pp. 3943-3983 ◽  
Author(s):  
GUSTAV W. DELIUS ◽  
PETER VAN NIEUWENHUIZEN ◽  
V. G. J. RODGERS

The method of coadjoint orbits produces for any infinite dimensional Lie (super) algebra A with nontrivial central charge an action for scalar (super) fields which has at least the symmetry A. In this article, we try to make this method accessible to a larger audience by analyzing several examples in more detail than in the literature. After working through the Kac-Moody and Virasoro cases, we apply the method to the super Virasoro algebra and reobtain the supersymmetric extension of Polyakov's local nonpolynomial action for two-dimensional quantum gravity. As in the Virasoro case this action corresponds to the coadjoint orbit of a pure central extension. We further consider the actions corresponding to the other orbits of the super Virasoro algebra. As a new result we construct the actions for the N = 2 super Virasoro algebra.


Sign in / Sign up

Export Citation Format

Share Document