Biodegradable poly(xylitol sebacate dodecanoate)/nano-hydroxyapatite composite for potential used in biomedical applications

2018 ◽  
Author(s):  
Noor Faezah Mohd Sani ◽  
Mat Uzir Wahit ◽  
Weng Hong Tham ◽  
Noor Aishatun Abd Majid
2019 ◽  
Vol 19 ◽  
pp. 106-113 ◽  
Author(s):  
M.P. Indira Devi ◽  
N. Nallamuthu ◽  
N. Rajini ◽  
T. Senthil Muthu Kumar ◽  
Suchart Siengchin ◽  
...  

2018 ◽  
Vol 19 (9) ◽  
pp. 3861-3873 ◽  
Author(s):  
Amy C. Kauffman ◽  
Alexandra S. Piotrowski-Daspit ◽  
Kay H. Nakazawa ◽  
Yuhang Jiang ◽  
Amit Datye ◽  
...  

2015 ◽  
Vol 332 ◽  
pp. 62-69 ◽  
Author(s):  
Yajing Yan ◽  
Xuejiao Zhang ◽  
Caixia Li ◽  
Yong Huang ◽  
Qiongqiong Ding ◽  
...  

Author(s):  
Ekaterina A. Gavrilenko ◽  
Daria A. Goncharova ◽  
Ivan N. Lapin ◽  
Anna L. Nemoikina ◽  
Valery A. Svetlichnyi ◽  
...  

Here, we report on ZnO nanoparticles (NPs) generated by nanosecond pulsed laser (Nd:YAG, 1064 nm) through ablation of metallic Zn target in water and air and their comparative analysis as potential nanomaterials for biomedical applications. The prepared nanomaterials were carefully characterized in terms of their structure, composition, morphology and defects. It was found that in addition to the main wurtzite ZnO phase, which is conventionally prepared and reported by others, the sample laser-generated in air also contained some amount of monoclinic zinc hydroxynitrate. Both nanomaterials were then used to modify model wound dressings based on biodegradable poly-L-lactic acid. The as-prepared model dressings were tested as biomedical materials with bactericidal properties towards S. aureus and E. coli strains. The advantages of the NPs prepared in air over their counterparts generated in water found in this work are discussed.   


Materials ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 186 ◽  
Author(s):  
Ekaterina A. Gavrilenko ◽  
Daria A. Goncharova ◽  
Ivan N. Lapin ◽  
Anna L. Nemoykina ◽  
Valery A. Svetlichnyi ◽  
...  

Here, we report on ZnO nanoparticles (NPs) generated by nanosecond pulsed laser (Nd:YAG, 1064 nm) through ablation of metallic Zn target in water and air and their comparative analysis as potential nanomaterials for biomedical applications. The prepared nanomaterials were carefully characterized in terms of their structure, composition, morphology and defects. It was found that in addition to the main wurtzite ZnO phase, which is conventionally prepared and reported by others, the sample laser generated in air also contained some amount of monoclinic zinc hydroxynitrate. Both nanomaterials were then used to modify model wound dressings based on biodegradable poly l-lactic acid. The as-prepared model dressings were tested as biomedical materials with bactericidal properties towards S. aureus and E. coli strains. The advantages of the NPs prepared in air over their counterparts generated in water found in this work are discussed.


Sign in / Sign up

Export Citation Format

Share Document