scholarly journals Comparative Study of Physicochemical and Antibacterial Properties of ZnO Nanoparticles Prepared by Laser Ablation of Zn Target in Water and Air

Materials ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 186 ◽  
Author(s):  
Ekaterina A. Gavrilenko ◽  
Daria A. Goncharova ◽  
Ivan N. Lapin ◽  
Anna L. Nemoykina ◽  
Valery A. Svetlichnyi ◽  
...  

Here, we report on ZnO nanoparticles (NPs) generated by nanosecond pulsed laser (Nd:YAG, 1064 nm) through ablation of metallic Zn target in water and air and their comparative analysis as potential nanomaterials for biomedical applications. The prepared nanomaterials were carefully characterized in terms of their structure, composition, morphology and defects. It was found that in addition to the main wurtzite ZnO phase, which is conventionally prepared and reported by others, the sample laser generated in air also contained some amount of monoclinic zinc hydroxynitrate. Both nanomaterials were then used to modify model wound dressings based on biodegradable poly l-lactic acid. The as-prepared model dressings were tested as biomedical materials with bactericidal properties towards S. aureus and E. coli strains. The advantages of the NPs prepared in air over their counterparts generated in water found in this work are discussed.

Author(s):  
Ekaterina A. Gavrilenko ◽  
Daria A. Goncharova ◽  
Ivan N. Lapin ◽  
Anna L. Nemoikina ◽  
Valery A. Svetlichnyi ◽  
...  

Here, we report on ZnO nanoparticles (NPs) generated by nanosecond pulsed laser (Nd:YAG, 1064 nm) through ablation of metallic Zn target in water and air and their comparative analysis as potential nanomaterials for biomedical applications. The prepared nanomaterials were carefully characterized in terms of their structure, composition, morphology and defects. It was found that in addition to the main wurtzite ZnO phase, which is conventionally prepared and reported by others, the sample laser-generated in air also contained some amount of monoclinic zinc hydroxynitrate. Both nanomaterials were then used to modify model wound dressings based on biodegradable poly-L-lactic acid. The as-prepared model dressings were tested as biomedical materials with bactericidal properties towards S. aureus and E. coli strains. The advantages of the NPs prepared in air over their counterparts generated in water found in this work are discussed.   


2019 ◽  
Vol 81 (2) ◽  
Author(s):  
Nurul Amira Ahmad Yusof ◽  
Norashikin Mat Zain

Apart from biocompatibility, hydrogel films with good physical, morphology, swelling, and antibacterial properties are required for biomedical applications. In this study, the effects of nanofiller (i.e., zinc oxide (ZnO) nanoparticles) on physical, morphology, swelling, and antibacterial properties of hydrogel film were investigated. The new chitosan/gelatin/ZnO hydrogel films were synthesized using solution casting method by blending the chitosan and gelatin solutions with ZnO nanoparticles. The use of glycerol (plasticizing agent) could enhance the durability and flexibility of the hydrogel film. From the FTIR results, it was found that chemical reactions occurred of gelatin was between 1500 cm-1 to 800 cm-1. On the other hand, the SEM results showed that the pore size distribution within the hydrogel film varied from 20µm to 700µm. The antibacterial properties ZnO hydrogel film against bacteria such as Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were evaluated using the zone of inhibition method. The antibacterial activity (against the S. aureus bacteria) of the new ZnO hydrogel film was more promising than that of the nanoparticle-free hydrogel film. The current findings showed that the new chitosan/gelatin/ZnO hydrogel film could be used in biomedical application. 


2021 ◽  
Vol 11 (17) ◽  
pp. 8219
Author(s):  
Ayben Pakolpakçıl ◽  
Zbigniew Draczyński ◽  
Justyna Szulc ◽  
Dawid Stawski ◽  
Nina Tarzyńska ◽  
...  

The growth of population and increase in diseases that cause an enormous demand for biomedical material consumption is a pointer to the pressing need to develop new sustainable biomaterials. Electrospun materials derived from green polymers have gained popularity in recent years for biomedical applications such as tissue engineering, wound dressings, and drug delivery. Among the various bioengineering materials used in the synthesis of a biodegradable polymer, poly(lactic acid) (PLA) has received the most attention from researchers. Hypericum perforatum oil (HPO) has antimicrobial activity against a variety of bacteria. This study aimed to investigate the development of an antibacterial sustainable material based on PLA by incorporating HPO via a simple, low-cost electrospinning method. Chemical, morphological, thermal, thickness and, air permeability properties, and in vitro antibacterial activity of the electrospun nonwoven fabric were investigated. Scanning electron microscopy (SEM) was used to examine the morphology of the electrospun nonwoven fabric, which had bead-free morphology ultrafine fibers. Antibacterial tests revealed that the Hypericum perforatum oil-loaded poly(lactic acid) nonwoven fabrics obtained had high antibacterial efficiency against Escherichia coli and Staphylococcus aureus, indicating a strong potential for use in biomedical applications.


2018 ◽  
Vol 243 ◽  
pp. 00017 ◽  
Author(s):  
Daria Goncharova ◽  
Ekaterina Gavrilenko ◽  
Anna Nemoykina ◽  
Valery Svetlichnyi

The paper studies physicochemical and antibacterial properties of ZnO nanoparticles obtained by pulsed laser ablation in water and air. Their composition and structure were studied by X-ray diffraction, transmission and scanning electron microscopy. Antibacterial activity of the nanoparticles was examined by its affection on Gram-positive Staphylococcus aureus (S.aureus). The dependence of nanoparticles’ physical and chemical antibacterial properties on the conditions of the ablation was shown. The model materials for the antibacterial bandage were made of cotton, filter paper and biodegradable polymer scaffolds (poly-l-lactide acid), and then they were coated with the obtained ZnO nanoparticles. The model bandage materials were examined by the scanning electron microscopy method and their antibacterial activity (ISO 20743:2013) was determined. High activity of all the samples against S.aureus was proved.


2019 ◽  
Vol 4 (1) ◽  
pp. 6-20 ◽  
Author(s):  
Panagiota Moutsatsou ◽  
Karen Coopman ◽  
Stella Georgiadou

Background: Within the healthcare industry, including the care of chronic wounds, the challenge of antimicrobial resistance continues to grow. As such, there is a need to develop new treatments that can reduce the bioburden in wounds. Objective: The present study is focused on the development of polyaniline (PANI) / chitosan (CH) nanofibrous electrospun membranes and evaluates their antibacterial properties. Methods: To this end, experimental design was used to determine the electrospinning windows of both pure chitosan and PANI/CH blends of different ratios (1:3, 3:5, 1:1). The effect of key environmental and process parameters (relative humidity and applied voltage) was determined, as well as the effect of the PANI/CH ratio in the blend and the molecular interactions between PANI and chitosan that led to jet stability. Results: The nanofibrous mats were evaluated regarding their morphology and antibacterial effect against model gram positive and gram negative bacterial strains, namely B. subtilis and E. coli. High PANI content mats show increased bactericidal activity against both bacterial strains. Conclusion: The blend fibre membranes combine the materials’ respective properties, namely electrical conductivity, biocompatibility and antibacterial activity. This study suggests that electrospun PANI/CH membranes are promising candidates for healthcare applications, such as wound dressings.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1043 ◽  
Author(s):  
Honghai Li ◽  
Yu Chen ◽  
Weipeng Lu ◽  
Yisheng Xu ◽  
Yanchuan Guo ◽  
...  

Current wound dressings have poor antimicrobial activities and are difficult to degrade. Therefore, biodegradable and antibacterial dressings are urgently needed. In this article, we used the hydrothermal method and side-by-side electrospinning technology to prepare a gelatin mat with incorporated zinc oxide/graphene oxide (ZnO/GO) nanocomposites. The resultant fibers were characterized by field emission environment scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffractometry (XRD) and Fourier transform infrared spectroscopy (FTIR). Results indicated that the gelatin fibers had good morphology, and ZnO/GO nanocomposites were uniformly dispersed on the fibers. The loss of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) viability were observed to more than 90% with the incorporation of ZnO/GO. The degradation process showed that the composite fibers completely degraded within 7 days and had good controllable degradation characteristics. This study demonstrated the potential applicability of ZnO/GO-gelatin mats with excellent antibacterial properties as wound dressing material.


2014 ◽  
Vol 5 ◽  
pp. 532-536 ◽  
Author(s):  
Anna V Abramova ◽  
Vladimir O Abramov ◽  
Aharon Gedanken ◽  
Ilana Perelshtein ◽  
Vadim M Bayazitov

A method for the production of antibacterial ZnO nanoparticles has been developed. The technique combines passing an electric current with simultaneous application of ultrasonic waves. By using high-power ultrasound a cavitation zone is created between two zinc electrodes. This leads to the possibility to create a spatial electrical discharge in water. Creation of such discharge leads to the depletion of the electrodes and the formation of ZnO nanoparticles, which demonstrate antibacterial properties. At the end of this reaction the suspension of ZnO nanoparticles is transported to a specially developed ultrasonic reactor, in which the nanoparticles are deposited on the textile. The nanoparticles are embedded into the fibres by the cavitation jets, which are formed by asymmetrically collapsing bubbles in the presence of a solid surface and are directed towards the surface of textile at very high velocities. Fabrics coated with ZnO nanoparticles by using the developed method showed good antibacterial activity against E. coli.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3230
Author(s):  
Aiping Hui ◽  
Fangfang Yang ◽  
Rui Yan ◽  
Yuru Kang ◽  
Aiqin Wang

A synergistic antibacterial strategy is effective in enhancing the antibacterial efficacy of a single antibacterial material. Plant essential oils (PEOs) are safe antibacterial agents. However, some of their characteristics such as intense aroma, volatility, and poor thermal stability limit their antibacterial activity and applications. In this paper, five kinds of PEOs were incorporated onto ZnO/palygorskite (ZnO/PAL) nanoparticles by a simple adsorption process to form organic–inorganic nanocomposites (PEOs/ZnO/PAL) with excellent antibacterial properties. TEM and SEM analyses demonstrated that ZnO nanoparticles uniformly anchored onto the surface of rod-like PAL, and that the structure of ZnO/PAL maintained after the incorporation of ZnO nanoparticles and PEOs. It was found that carvacrol/ZnO/palygorskite (CAR/ZnO/PAL) exhibited higher antibacterial activities than other PEOs/ZnO/PAL nanocomposites, with minimum inhibitory concentration (MIC) values of 0.5 mg/mL and 1.5 mg/mL against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), respectively. Moreover, the antibacterial efficiency of CAR/ZnO/PAL nanocomposites was superior to that of ZnO/PAL and pure CAR, demonstrating the synergistic effect that occurs in the combined system. PAL serving as a carrier for the combination of organic PEOs and ZnO nanoparticles is an effective strategy for enhanced, clay-based, organic–inorganic hybrid antibacterial nanocomposites.


2021 ◽  
Vol 21 (12) ◽  
pp. 6168-6182
Author(s):  
Saee Gharpure ◽  
Rachana Yadwade ◽  
Shuana Mehmood ◽  
Balaprasad Ankamwar

Zinc oxide nanoparticles have been biosynthesized with the help of Neolamarckia cadamba leaf and fruit extracts. ZnO nanoparticles were tested for antibacterial activity before and after calcination against Gram positive (Staphylococcus aureus, Bacillus subtilis) as well as Gram negative micro-organisms (Escherichia coli, Pseudomonas aeruginosa) within the concentration range 0.625–10 mg/mL with the help of well diffusion technique. Higher antibacterial potential has been observed in ZnO nanoparticles synthesized using leaf extract in comparison with those synthesized using fruit extract. Increased antibacterial activity was observed before calcination as compared to after calcination. ZnO synthesized using leaf extract were observed to show significant antibacterial potential against E. coli, S. aureus along with P. aeruginosa before calcination as well as against E. coli after calcination. Similarly, ZnO nanoparticles synthesized using fruit extract exhibited antibacterial activity against E. coli and P. aeruginosa before calcination and against E. coli after calcination. Both the ZnO nanoparticles before and after calcination did not show any antibacterial activity against B. subtilis. Thus, ZnO nanoparticles can serve a dual purpose by its application as an antibacterial agent against susceptible micro-organisms as well as biocompatible carrier system for drug delivery applications in case of non-antibacterial properties by virtue of its inertness as well as easy disposal.


Sign in / Sign up

Export Citation Format

Share Document