scholarly journals Hot-wire measurements of the evolution of total temperature and mass flow pulsations in supersonic boundary layer on flat plate with coating permeability

Author(s):  
A. D. Kosinov ◽  
N. V. Semionov ◽  
Yu. G. Yermolaev ◽  
G. L. Kolosov ◽  
A. A. Yatskikh ◽  
...  
2018 ◽  
Author(s):  
A. D. Kosinov ◽  
G. L. Kolosov ◽  
A. A. Yatskikh ◽  
N. V. Semionov ◽  
Yu. G. Yermolaev ◽  
...  

2017 ◽  
Author(s):  
Aleksey A. Yatskikh ◽  
Gleb L. Kolosov ◽  
Alexander D. Kosinov ◽  
Yury G. Yermolaev ◽  
Nickolay V. Semionov ◽  
...  

2020 ◽  
Vol 1677 ◽  
pp. 012033
Author(s):  
A A Yatskikh ◽  
A D Kosinov ◽  
N V Semionov ◽  
Y G Ermolaev ◽  
A V Panina ◽  
...  

2010 ◽  
Vol 5 (3) ◽  
pp. 38-46
Author(s):  
Vladimir I. Kornilov ◽  
Andrey V. Boiko

The effect of air microblowing through a porous wall on the properties of a turbulent boundary layer formed on a flat plate in an incompressible flow is studied experimentally. The Reynolds number based on the momentum thickness of the boundary layer in front of the porous insert is 3 900. The mass flow rate of the blowing air per unit area was varied within Q = 0−0.0488 кg/s/m2 . A consistent decrease in local skin friction, reaching up to 45−47 %, is observed to occur at the maximal blowing air mass flow rate studied.


2016 ◽  
Vol 11 (3) ◽  
pp. 16-26
Author(s):  
Vladimir Kornilov ◽  
Andrey Boiko ◽  
Ivan Kavun ◽  
Anatoliy Popkov

A generalized analysis of the results of numerical and experimental studies of air blowing into a turbulent boundary layer through finely perforated surface consisting of alternating permeable and impermeable sections of varying length providing a sudden change in the flow conditions at the boundaries of these sections is presented. The air blowing coefficient Cb determined by the mass flow rate per unit area of the active perforated sample varied in the range from 0 to 0.008. It is shown that as Cb grows, the maximum reduction in the mean surface skin-friction coefficient CF, which is the value through the permeable area of perforated sample, reaches about 65 %. When keeping the equal mass flow rate Q for all tested combinations, the mean skin-friction coefficient remains constant, independent of geometrical parameters of permeable and impermeable sections. Increasing the length of the last permeable section leads to the growth of relaxation region which is characterized by the reduced skin friction values on the impermeable part of the flat plate.


2019 ◽  
Vol 196 ◽  
pp. 00018 ◽  
Author(s):  
Vasiliy Kocharin ◽  
Aleksandr Kosinov ◽  
Yuriy Yermolayev ◽  
Nikolay Semionov

The experimental study of the effect of weak shock waves on the supersonic boundary layer of the flat plate with a blunt leading edge (the radius of bluntness was r = 2.5 mm) with Mach number M = 2.5 and zero angle of attack was carried out. The measurements were carried out using the constant temperature anemometer. The paper presents a complex flow structure on the surface of the model. High-intensity peaks were found in the regions of the disturbed flow. Also the spectral analysis of perturbations was performed. It is found that the supersonic boundary layer on a flat plate is very sensitive to the effect of weak shock waves.


Author(s):  
Seyed Mohammad Hasheminejad ◽  
Hatsari Mitsudharmadi ◽  
S. H. Winoto ◽  
Kim Boon Lua ◽  
Hong Tong Low

The evolution of streamwise counter-rotating vortices induced by different leading edge patterns is investigated quantitatively using hot-wire anemometer. A notched and triangular leading edge with the same wavelength and amplitude were designed to induce streamwise vortices over a flat plate at Reynolds number (based on the wavelength of the leading edge patterns) of 3080 corresponding to free-stream velocity of 3 m/s. The streamwise velocity at different streamwise locations collected and analyzed using a single wire probe hot-wire anemometer showed reveal different characteristics of boundary layer flow due to the presence of these two leading edge patterns. The major difference is the appearance of an additional streamwise vortex between the troughs of the notched pattern. Such vortices increase the mixing effect in the boundary layer as well as the velocity profile.


Author(s):  
K. Funazaki ◽  
Y. Wakita ◽  
T. Otsuki

This study aims at clarification of wake-induced bypass transition process of a boundary layer on a flat plate with no pressure gradient. Special attention is paid to inception as well as growth of a turbulent spot created by the incoming wake as an external disturbance. To meet this goal a unique wake generator is invented to create an isolated turbulent spot. A multi-probe sensor with seven single-hot-wire probes is used to measure wake-affected boundary layer. The wake generator consists of a disk, pillars and a very thin wire with a small sphere on it. The sphere on the wire generates periodic wakes behind it when it passes across the main flow in front of the test flat plate. These sphere wakes impinge the flat plate in a spatially and timewisely localized manner so that the wakes periodically leave narrow affected zones inside the boundary layer. The observations confirm that an isolated turbulence spot emerges from each of those wake-affected zones. It is also found that the turbulent spot observed in this study bears a close resemblance to the conventional turbulent spot that takes a shape of arrowhead pointing downstream.


2019 ◽  
Vol 213 ◽  
pp. 02002
Author(s):  
Pavel Antoš ◽  
Sergei Kuznetsov

Boundary layer on a uniformly heated flat plate was studied experimentally. Both, the velocity boundary layer and the temperature boundary layer, was investigated by means of hot-wire anemometry. A probe with parallel wires was used for velocity-temperature measurement. Experiment was performed in the closed-circuit wind tunnel with several levels of heat flux at the wall. The wall temperature was set up in the interval from 20 ºC to 200 ºC.


Sign in / Sign up

Export Citation Format

Share Document