temperature pulsations
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 11)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 2127 (1) ◽  
pp. 012012
Author(s):  
VD Kobtsev ◽  
D N Kozlov ◽  
S A Kostritsa ◽  
S N Orlov ◽  
V V Smirnov ◽  
...  

Abstract The feasibility to determine the timescale of pulsations of “instantaneous” local temperatures in a turbulent flame at a microsecond time scale by using coherent anti-Stokes Raman scattering (CARS) spectroscopy is demonstrated for the first time to our knowledge. A laboratory laser measurement complex was utilized, based on two CARS-spectrometers employing synchronized pulse-repetitive lasers with 10 ns pulse duration. The system enabled to record, with high temporal resolution (in one single laser shot) and at a variable delay between two sequential shots following each other in pairs at a repetition rate of 10 Hz, series of CARS spectra of N2 molecules from a probe volume as small as 0.03×0.03×2 mm3. From the spectra, “instantaneous” temperatures at a given delay were derived. The obtained values enabled calculation of the correlation coefficient of temperature pulsations vs the delay. The results are presented for the series of 500 single-shot coupled measurements, at the delays in the range 1 μs – 0 ms, of local gas temperatures in a few points of an open turbulent partially premixed methane-air flame of a model burner with visually distinguishable stability of combustion. The average temperatures were between 1500 K and 1800 K. The measurements allowed temperature correlation times in the selected points of the flame to be derived.


2021 ◽  
Vol 20 (1) ◽  
pp. 25-33
Author(s):  
N. M. Antonova ◽  
V. K. Paskova ◽  
I. V. Velcheva

Aim. The study aims to evaluate impairment of the rheological and electrical properties of blood, plasma viscosity and blood conductivity in patients with type 2 diabetes mellitus (T2DM) in comparison with the data of the control group of healthy individuals. It also aims to investigate the changes of the skin blood flow responses to cold stress in T2DM patients through wavelet analysis of the peripheral skin temperature pulsations and to estimate their relationships with the blood viscosity and blood conductivity parameters, obtained from the simulation of experimental data with mathematical equations.Materials and methods. The whole blood viscosity was measured by Contraves LS30 viscometer (Switzerland) at a steady flow in 9 healthy individuals and in 13 patients with type 2 diabetes mellitus. Time variation of whole blood conductivity σ under transient flow at rectangular and trapezium shaped Couette viscometric flow and under electric field of 2 kHz was determined. The amplitudes of the skin temperature pulsations (ASTP) were monitored by «Microtest» device («FM-Diagnostics», Russia). To analyze the temperature fluctuations, wavelet transformation analysis of the low amplitude oscillations of skin temperature in accordance with myogenic (0.05–0.14 Hz), neurogenic (0.02–0.05 Hz), and endothelial (0.0095–0.02 Hz) control mechanisms of the vascular tone (WAST method) was applied.Results. Blood viscosity was increased in the T2DM patients’ group, while blood conductivity decreased in comparison to controls. Two sigmoidal equations were applied to describe the kinetics of blood conductivity. Both models include conductivity indices (σ1 , σ2 , σ3 ) and time indices too. The Pearson correlations between these parameters and the ASTP in the frequency ranges, corresponding to the myogenic, neurogenic and endothelial mechanisms of the microcirculation tone regulation were analyzed. The correlation analysis revealed good ASTP–(σ1 , σ2 , σ3 ) relationships in the neurogenic range 3 minutes after the cold test, while the ASTP–(σ1 , σ2 , σ3 ) correlation in the myogenic frequency range before the cold test was negative (r<–0.8, p<0.5).Conclusion. The results complement the studies of the microvascular regulatory mechanisms and endothelial dysfunction in patients with type 2 diabetes mellitus, as well as their relationships with the rheological and electrical properties of blood.


Author(s):  
Aleksandr Sataev ◽  
Vyacheslav Andreev ◽  
Denis Novikov ◽  
Julia Perevezentseva

The processes for mixing of non-isothermal streams essentially define the parameters of the heat-carrier on an input in a core in modes with incomplete structure of the working equipment and, as a consequence, - a heat engineering condition of a core. Besides, the task of researching the temperature pulsations accompanying practically all modes of currents for non-isothermal streams is extremely relevant, as these pulsations lead to additional thermocyclic loadings on elements of the equipment and in many cases define its resource. The paper describes the research of mixing processes for non-isothermal water coolant flows in hydraulic model of ship nuclear power plant. In several experiments, attention was paid to the mixing processes when feeding non-isothermal flows through the circulation loops located opposite of each other. To simulate the effect of external dynamic force in the form of periodic effect on the spatial orientation of the model, the ship was tested on a stand "Swinging platform". These vibrations affected the mixing processes occurring within the model. The main impact they had on the transition time, temperature gradient, vertical component of the velocity projection. In the future, these parameters will be clarified and the influence of other factors on the mixing of non-isothermal flows in the ship's nuclear power plant will be studied in more detail.


2020 ◽  
Vol 1677 ◽  
pp. 012033
Author(s):  
A A Yatskikh ◽  
A D Kosinov ◽  
N V Semionov ◽  
Y G Ermolaev ◽  
A V Panina ◽  
...  

2020 ◽  
Vol 27 (4) ◽  
Author(s):  
S. Yu. Volkov ◽  
S. R. Bogdanov ◽  
R. E. Zdorovennov ◽  
N. I. Palshin ◽  
G. E. Zdorovennova ◽  
...  

Purpose. The observation measurements testify the fact that heat and mass transfer processes in the shallow ice-covered lakes are not limited to the molecular diffusion only. In particular, the effective thermal diffusivity exceeds the molecular one by up to a few orders of magnitude. Now it is widely accepted that the transfer processes, in spite of their low intensity, are controlled by intermittent turbulence. At the same time, its nature and generation mechanism are still studied insufficiently. The paper represents one of such mechanisms associated with resonance generation of short internal waves by the barotropic seiches. Methods and Results. The temperature measurements in a shallow lake in winter were used as an experimental base. Having been analyzed, the temperature profiles’ dynamics observed during a few weeks after freezing revealed the anomalous values of thermal diffusivity. At that the temperature pulsations’ spectra clearly demonstrate the peak close to the main mode of barotropic seiches. Counter-phase oscillations at the different depths and pronounced heterogeneity of the amplitudes of temperature pulsations over depth indicate presence of internal waves. Based on these data, the mechanism of energy transfer from the barotropic seiches to the internal waves similar to the “tidal conversion” (the latter governs resonance generation of internal tides in the ocean), is proposed. The expressions for heat flux, energy dissipation rate and effective thermal diffusivity are derived. Conclusions. Internal waves can play an essential role in the processes of interior mixing and heat transfer in the ice-covered lakes. Though direct wind-induced turbulence production is inhibited, baric perturbations in the atmosphere can give rise to barotropic seiches, which play the role of an intermediate energy reservoir and can generate short resonant internal waves resulted from interaction with the undulate lake floor. The internal wave field parameters strongly depend on the barotropic seiche amplitudes, buoyancy frequency and the bottom topography features.


2019 ◽  
Vol 5 (3) ◽  
pp. 225-229
Author(s):  
Sergey M. Dmitriev ◽  
Alexandr V. Mamaev ◽  
Renat R. Ryazapov ◽  
Aleksey Ye. Sobornov ◽  
Andrey V. Kotin ◽  
...  

One of the most important scientific and technical tasks of the nuclear power industry is to assure the reactor equipment life and reliability under random temperature pulsations. High-intensity temperature pulsations appear during the process of mixing non-isothermal coolant flows. Coolant thermal pulsations cause corresponding, sometimes very significant, fluctuations in the temperature stresses of the heat-exchange surface metal, which, added to static loads, can lead to fatigue failure of equipment components. The purpose of this work was to conduct an experimental study of the temperature and stress-strain states of a pipe sample under the influence of local stochastic thermal pulsations caused by the mixed single-phase heat coolant flows. To solve the set problems, an experimental section was created, which made it possible to simulate the process of mixing non-isothermal coolant flows accompanied by significant temperature pulsations. The design of the experimental section allowed us to study the thermohydraulic and life characteristics of pipe samples made of austenite steel (60×5 mm). Some tools were developed for measuring the pipe sample stress-strain state and the coolant flow temperature field in the zone of mixed single-phase media with different temperatures. The measuring tools were equipped with microthermocouples and strain sensors. As a result, we obtained experimental data on temperature pulsations, time-averaged temperature profiles of the coolant flow in the mixing zone as well as statistical and spectral-correlation characteristics of thermal pulsations. Based on the results of measuring the relative strains, the values of fatigue stresses in the mixing zone were calculated. In addition, some devices and methods were elaborated to measure the temperature and stress-strain states of the pipe sample under the influence of local stochastic thermal pulsations. The developed experimental section provided thermal-stress loading of the metal surface at a high level of alternating stress amplitudes causing rapid damage accumulation rates. The results were included in the database to verify the method for assessing the fatigue life of structural materials for nuclear power plants as applied to austenite steel 12Cr18Ni10Ti under the influence of random thermal cyclic loads.


2019 ◽  
Vol 2019 (2) ◽  
pp. 117-127
Author(s):  
Sergej Mihajlovich Dmitriev ◽  
Alexander Viktorovich Mamaev ◽  
Renat Ramil’yevich Rayzapov ◽  
Aleksey Yevgen’yevich Sobornov ◽  
Andrey Valer’yevich Kotin ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
pp. 53-60
Author(s):  
S. M. Dmitriev ◽  
R. R. Ryazapov ◽  
A. V. Mamaev ◽  
A. E. Sobornov ◽  
A. V. Kotin ◽  
...  

Provding a high level of durability of heat exchange equipment of water-cooled reactors under local stochastic temperature pulsations is an important scientific and technical problem for the nuclear power industry. Temperature pulsations produced by mixing non-isothermal coolant flows with high temperature gradient are most dangerous. This work is an experimental study of temperature and stress-strain state of a tube sample under local stochastic temperature pulsations caused by mixing of coolant flows.To solve the problems posed, aY-junction with «counter injection» was built, which was included in the thermal-hydraulic research facility. The design of theY-junction allows study of the thermal-hydraulic characteristics and durability of tube samples made of austenitic steel of 60 × 5 мм. Some tube samples had developed for measuring the temperature, stress-strain state of tube material and temperature field of coolant flow in mixing zone of single-phase coolants with different temperatures. Measuring tube samples were equipped with micro thermocouples and strain gauges.The experimental data of temperature pulsations, time-averaged temperature field in the coolant flow and on the outer surface of the sample were obtained, and statistical and spectral correlation characteristics of temperature pulsations were analyzed. According to results of measuring the relative strain, values of stresses were calculated.Devices and research techniques are developed. The combination of coolant flows parameters that provide thermal load of the metal surface at the highest level of stress intensity amplitude was obtained. The study results are used to verify the method for evaluating fatigue of reactor installations materials under stochastic temperature pulsations.


Sign in / Sign up

Export Citation Format

Share Document