Application of Taguchi techniques to study the effect of alkaline treatment and fiber length on mechanical properties of short bamboo fiber reinforced epoxy composites

2019 ◽  
Author(s):  
Ravikantha Prabhu ◽  
Sharun Mendonca ◽  
Rudolf D’Souza ◽  
John Paul Vas ◽  
Thirumaleshwara Bhat
2010 ◽  
Vol 123-125 ◽  
pp. 1031-1034 ◽  
Author(s):  
Sandhyarani Biswas ◽  
Alok Satapathy ◽  
Amar Patnaik

In order to obtain the favoured material properties for a particular application, it is important to know how the material performance changes with the filler content under given loading conditions. In this study, a series of bamboo fiber reinforced epoxy composites are fabricated using conventional filler (aluminium oxide (Al2O3) and silicon carbide (SiC) and industrial wastes (red mud and copper slag) particles as filler materials. By incorporating the chosen particulate fillers into the bamboo-fiber reinforced epoxy, synergistic effects, as expected are achieved in the form of modified mechanical properties. Inclusion of fiber in neat epoxy improved the load bearing capacity (tensile strength) and the ability to withstand bending (flexural strength) of the composites. But with the incorporation of particulate fillers, the tensile strengths of the composites are found to be decreasing in most of the cases. Among the particulate filled bamboo-epoxy composites, least value of void content are recorded for composites with silicon carbide filling and for the composites with glass fiber reinforcement minimum void fraction is noted for red mud filling. The effects of these four different ceramics on the mechanical properties of bamboo- epoxy composites are investigated and the conclusions drawn from the above investigation are discussed.


2019 ◽  
Vol 15 (5) ◽  
pp. 947-957 ◽  
Author(s):  
Giridharan R. ◽  
Raatan V.S. ◽  
Jenarthanan M.P.

Purpose The purpose of this paper is to study the effects of fiber length and content on properties of E-glass and bamboo fiber reinforced epoxy resin matrices. Experiments are carried out as per ASTM standards to find the mechanical properties. Further, fractured surface of the specimen is subjected to morphological study. Design/methodology/approach Composite samples were prepared according to ASTM standards and were subjected to tensile and flexural loads. The fractured surfaces of the specimens were examined directly under scanning electron microscope. Findings From the experiment, it was found that the main factors that influence the properties of composite are fiber length and content. The optimum fiber length and weight ratio are 15 mm and 16 percent, respectively, for bamboo fiber/epoxy composite. Hence, the prediction of optimum fiber length and content becomes important, so that composite can be prepared with best mechanical properties. The investigation revealed the suitability of bamboo fiber as an effective reinforcement in epoxy matrix. Practical implications As bamboo fibers are biodegradable, recyclable, light weight and so on, their applications are numerous. They are widely used in automotive components, aerospace parts, sporting goods and building industry. With this scenario, the obtained result of bamboo fiber reinforced composites is not ignorable and could be of potential use, since it leads to harnessing of available natural fibers and their composites rather than synthetic fibers. Originality/value This work enlists the effect of fiber length and fiber content on tensile and flexural properties of bamboo fiber/epoxy composite, which has not been attempted so far.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1367 ◽  
Author(s):  
Mohamad Zaki Hassan ◽  
Siti Amni Roslan ◽  
S. M. Sapuan ◽  
Zainudin A. Rasid ◽  
Ariff Farhan Mohd Nor ◽  
...  

The objective of this research is to optimize the alkaline treatment variables, including sodium hydroxide (NaOH) concentration, soaking, and drying time, that influence the mechanical behavior of bamboo fiber-reinforced epoxy composites. In this study, a Box–Behnken design (BBD) of the response surface methodology (RSM) was employed to design an experiment to investigate the mercerization effect of bamboo fiber-reinforced epoxy composites. The evaluation of predicted tensile strength as a variable parameter of bamboo fiber (Bambusa vulgaris) reinforced epoxy composite structures was determined using analysis of variance (ANOVA) of the quadratic model. In this study, a total of 17 experiment runs were measured and a significant regression for the coefficient between the variables was obtained. Further, the triangular and square core structures made of treated and untreated bamboo fiber-reinforced epoxy composites were tested under compressive loading. It was found that the optimum mercerization condition lies at 5.81 wt.% of the NaOH, after a soaking time of 3.99 h and a drying time of 72 h. This optimum alkaline treatment once again had a great effect on the structures whereby all the treated composite cores with square and triangular structures impressively outperformed the untreated bamboo structures. The treated triangular core of bamboo reinforced composites gave an outstanding performance compared to the treated and untreated square core composite structures for compressive loading and specific energy absorbing capability.


Polymers ◽  
2018 ◽  
Vol 10 (6) ◽  
pp. 608 ◽  
Author(s):  
Kai Zhang ◽  
Fangxin Wang ◽  
Wenyan Liang ◽  
Zhenqing Wang ◽  
Zhiwei Duan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document