Experimental study on effect of fiber length and fiber content on tensile and flexural properties of bamboo fiber/epoxy composite

2019 ◽  
Vol 15 (5) ◽  
pp. 947-957 ◽  
Author(s):  
Giridharan R. ◽  
Raatan V.S. ◽  
Jenarthanan M.P.

Purpose The purpose of this paper is to study the effects of fiber length and content on properties of E-glass and bamboo fiber reinforced epoxy resin matrices. Experiments are carried out as per ASTM standards to find the mechanical properties. Further, fractured surface of the specimen is subjected to morphological study. Design/methodology/approach Composite samples were prepared according to ASTM standards and were subjected to tensile and flexural loads. The fractured surfaces of the specimens were examined directly under scanning electron microscope. Findings From the experiment, it was found that the main factors that influence the properties of composite are fiber length and content. The optimum fiber length and weight ratio are 15 mm and 16 percent, respectively, for bamboo fiber/epoxy composite. Hence, the prediction of optimum fiber length and content becomes important, so that composite can be prepared with best mechanical properties. The investigation revealed the suitability of bamboo fiber as an effective reinforcement in epoxy matrix. Practical implications As bamboo fibers are biodegradable, recyclable, light weight and so on, their applications are numerous. They are widely used in automotive components, aerospace parts, sporting goods and building industry. With this scenario, the obtained result of bamboo fiber reinforced composites is not ignorable and could be of potential use, since it leads to harnessing of available natural fibers and their composites rather than synthetic fibers. Originality/value This work enlists the effect of fiber length and fiber content on tensile and flexural properties of bamboo fiber/epoxy composite, which has not been attempted so far.

2014 ◽  
Vol 27 (2) ◽  
pp. 77-82 ◽  
Author(s):  
H Ahmad ◽  
MA Islam ◽  
MF Uddin

Chopped jute fiber-epoxy composites with varying fiber length (2-12 mm) and mass fraction (0.05-0.35) had been prepared by a heat press unit. The cross-linked product was characterized in terms of specific gravity, thermal conductivity, tensile strength, Young modulus and elongation at break. The transverse thermal conductivities for randomly oriented fibers in the composite were investigated by Lees and Charlton’s method. The tensile strength, Young modulus and elongation at break were investigated by a Universal Tensile Tester. With an increase in the fiber content (irrespective of the fiber length), the thermal conductivity of the composite decreases; the decreasing rate being highest for the fiber length of 2 mm followed by that for the fiber length of 6 and 12 mm. The decreasing rate of the thermal conductivity of the jute-epoxy composite is comparatively higher to that reported in literature for acrylic polymer hemp fiber composite. The tensile strength also decreases with the increase of the fiber content in the composite. The fiber length does not show to have significant effect on the tensile strength of the composite; the variation in strength being masked within experimental error. The Young modulus increases with the increase of fiber content within elastic limit; showing the highest values for the fiber length of 6 mm followed by those for the fiber length of 2 mm and 12 mm. The elongation at break shows slightly increasing trend up to 15% fiber content, but beyond that it decreases drastically. The specific gravity decreases with the increase in the fiber content and thus the recalculated specific tensile strength is found to keep at a stable level of 36MPa up to the fiber content of 20%, and beyond that the specific tensile strength decreases with the increase in the fiber content. It is concluded that jute fiber-epoxy composite could be used as a good heat-insulating material. Further investigation is recommended on the improvement of the thermal insulation keeping the mechanical properties unchanged or even improved. The TGA study is also required to ascertain the field of application of the material. DOI: http://dx.doi.org/10.3329/jce.v27i2.17807 Journal of Chemical Engineering, IEB Vol. ChE. 27, No. 2, December 2012: 77-82


2008 ◽  
Vol 41-42 ◽  
pp. 313-316 ◽  
Author(s):  
Li Ping He ◽  
Yong Tian ◽  
Lu Lin Wang

Natural fiber reinforced polypropylene composites (NF/PP) have attracted a lot of attention because of their light weight, good mechanical properties, recyclable and environmental friendly features. This work has successfully fabricated ramie fiber reinforced polypropylene composites (RF/PP) with a hybrid method of melt-blending and injection molding. Different RF/PP eco-materials have been fabricated by varying the fiber length, fiber content and way of fiber pre-treatment. This paper studied the mechanical properties of the fabricated RF/PP composites in depth by investigating the mechanical behaviors of RF/PP and microstructures of the ruptured surfaces. The results show that the increases of fiber length and fiber content can improve the tensile strength, flexural strength and compression strength apparently, but result in negative influences on the impact strength and elongation behaviors of RF/PP composites. The optimal addition amount of ramie fiber is around 20 wt%. The pre-treatment of ramie fiber in 10%~15% NaOH is good to the mechanical properties of RF/PP. The fiber length can be varied in the range of 3-8 mm. It is expected that the fabricated RF/PP composites can be applied to automobile industry as environmental friendly eco-materials.


Author(s):  
Md. Koushic Uddin ◽  
Muksit Ahmed Chowdhury ◽  
Sonia Hossain ◽  
Md Zahidul Islam ◽  
Mohammad Shamim Sardar ◽  
...  

Fiber reinforced composite materials are attractive because of their properties such as high toughness, water resistance and can be adapted to meet the specific needs of a variety of applications. Incorporation of natural fibers can reduce the dependency over synthetic fibers. In this work, Jute glass fiber reinforced composites are fabricated by simple hand lay-up technique using epoxy resin as a matrix and various mechanical properties like tensile strength, flexural strength, impact strength and also the water absorption properties of the composite specimens are evaluated and analysed thoroughly. It is observed that incorporation of optimum amount of jute fibre with glass fibre improved mechanical properties can be achieved. Finally cost of composites are analysed and compared.


2020 ◽  
Vol 12 (2) ◽  
pp. 136-143
Author(s):  
Hiral H. Parikh ◽  
Harshit P. Soni ◽  
Deval A. Suthar ◽  
Dhruv H. Patel

Background: The technological enhancement in various disciplines enhances the demand for the new material which can replace the conventional materials. This has initiated the idea of composite materials. Synthetic fiber reinforced polymer matrix composites are being widely used due to its mechanical properties, but these fibers lack in terms of biodegradability, initial processing cost, recyclability and health hazard. An alternative to tackle these drawbacks can be found in natural fibers, that give an advantage in terms of strength to weight ratio, ease of availability and biodegradability. Methods: This work is aimed to determine the effect of hybrid basalt - banana reinforced epoxy composite and their effectiveness in substituting few conventional materials in terms of their mechanical properties, wear resistance and water absorption rate. Results: Basalt Banana Hybrid Composite (BBHC) is tested for their mechanical strength, hardness, impact strength, flexural strength, wear rate and water absorption rate. The test results of mechanical properties for the BBHC are compared to the other hybrid materials and conventional materials. Conclusion: The test results reveal that the hybrid basalt banana epoxy composite is a good substitute over various conventional materials. The water absorption test results reveal that the hydrophilic nature of the natural fibers reduces a lot after the hybridization.


Author(s):  
Kazuo Fujiyoshi ◽  
Takao Ueda ◽  
Hitoshi Takagi ◽  
Masayuki Tsukagoshi

Conventionally, short fibers such as steel and synthetic fibers have been mixed into spray mortar used for slope protection to enhance resistance against cracking and durability. However, in the quest of higher performance fiber-reinforced mortar with reduced impact on the environment, natural fibers such as bamboo fibers may play a vital role. Thus, the tensile strength and the bond strength of bamboo fibers used for spray mortar were examined by laboratory tests. The mechanical properties of bamboo-fiber-reinforced spray mortar were examined under cyclic wet and dry conditions along with its resistance against freezing and thawing by a spray test. It was confirmed that 0.75% mixture of bamboo fibers in spray mortar successfully improved mechanical properties and durability. These include adhesion strength to the base surface following exposure to cyclic wet/dry conditions and overall resistance against freezing/thawing. Moreover, higher compressive strength, flexural toughness and adhesion strength to the base surface were achieved by further mixing in vinylon fibers or fly ash in addition to bamboo fibers.


Sign in / Sign up

Export Citation Format

Share Document